上海贝岭-半导体 广告 智能家居技术创新峰会4 广告 2024春季电机产业链交流会4 广告 2024电子热点解决方案创新峰会4 广告

基于ATMEGA16的太阳能供电制冷系统设计

2012-08-24 09:38:26 来源:AVR技术社区 点击:1003

摘要:  目前,绝大部分的制冷设备都是以电能驱动的。传统的制冷设备不仅消耗大量的电能,同时也因为使用氟里昂等制冷工质而对环境造成污染,因此制冷中的节能和环保问题成为人们关注的焦点,并寻求以清洁能源供电且不使用氟里昂等传统制冷工质的制冷方式。文中研究的制冷系统以太阳能光伏电池提供驱动能源、以半导体制冷片为冷源,是一种节能环保的新型制冷方式。

关键字:  太阳能光伏,  半导体制冷片

目前,绝大部分的制冷设备都是以电能驱动的。传统的制冷设备不仅消耗大量的电能,同时也因为使用氟里昂等制冷工质而对环境造成污染,因此制冷中的节能和环保问题成为人们关注的焦点,并寻求以清洁能源供电且不使用氟里昂等传统制冷工质的制冷方式。文中研究的制冷系统以太阳能光伏电池提供驱动能源、以半导体制冷片为冷源,是一种节能环保的新型制冷方式。

半导体制冷片也叫电子制冷片,依据珀尔帖效应原理来进行制冷。半导体制冷片不需要制冷剂,没有污染源,工作时没有震动、噪音、寿命长;作为一种电流换能型片件,通过输入电流的控制,可实现高精度的温度控制。半导体制冷已经在航空航天、医疗技术、生物工程等领域得到广泛的应用。

1 制冷系统设计

1.1 制冷功率计算

系统各部分的参数匹配取决于系统所需要的制冷量,因此制冷量的计算是设计的前提。在本文中,制冷环境为一密闭圆筒粮仓。由于粮仓顶层在外界气温较高时易积热,为维持粮食在低温或准低温环境下储藏的目的,需要对粮仓内粮堆线以上的空气层进行制冷。根据传热学基本原理,可计算出粮仓的冷负荷。

粮仓内空气的制冷量需求:

Q1=ρVC(T0-T1) (1)

顶部空气层与粮仓侧面、仓顶以及粮仓内的粮食存在热量的传递,在τ时刻后,向外扩散的冷量:

Q2=KS(T2-T3) (2)

粮仓的总制冷负荷:

Q=Q1+Q2 (3)

式中,ρ为粮仓内空气的密度;V为空气体积;C为空气的比热;T0为粮仓内空气的初始温度;T1为制冷目标温度;K为等效传热系数,单位为W/K;S为有效传热面积;T2和T3分别为粮仓内外随时间变化的温度,单位为K。

根据半导体制冷片的热电制冷原理,可以根据测得的温度、电压和电流计算半导体制冷原件的特性参数:

式中,α为制冷元件的塞贝克系数,单位为V/K;I为半导体制冷片的工作电流,单位为A;Th和Tc分别为制冷片热端和冷端的温度,单位为K;R为制冷片的电阻,单位为Ω;Kt为制冷片的总导热系数,单位为W/K。

通过公式(1)、(2)和(3),可以估算系统的冷负荷,即系统所需的制冷量,结合公式(4)、(5)、(6)和(7)对系统的制冷量和输入功率进行优化分析,从而确定供电电源的功率,使系统制冷效率达到最高,从而实现对系统关键器件参数(光伏电池的功率、蓄电池的容量、制冷片的制冷功率和输入功率)的合理匹配。

1.2 系统的总体结构

在此次设计中,太阳能半导体制冷是通过光伏电池板的光电转换,产生电能驱动半导体制冷片的方式来制冷,这种方式的优点是相对易于控制,成本较低。太阳能的强度受多种因素的影响而不能维持常量,为了实现电源和负载之间稳定、高效工作,提高供电质量,需要设计一种可靠的、高效的太阳能电源控制器。

太阳能半导体制冷系统由太阳能电池组、蓄电池、控制器、半导体制冷片、传感器、驱动电路、采样电路和显示电路构成,其结构如图1所示。

2 系统硬件设计

控制器的硬件电路主要由微处理器及其外围的制冷驱动电路,温度检测和电流采样电路所组成。

2.1 ATMEGA16微处理器

选择AVR系列ATMEGA16微处理器为核心控制处理单元。ATMEGA16单片机是AVR系列中高性能低功耗的8位处理器,内部具有丰富的资源,其内部集成8路十位具有可选可编程增益的模数转换器(ADC)及其独特的脉宽调制输出PWM功能。ATMEGA16具有高可靠性、实时性好、抗干扰能力强、成本低等优点。

2.2 半导体制冷驱动电路

选择的制冷片的型号为TEC1-12706,其最大工作电流为6 A,工作电压为12 V。半导体制冷片需用直流电流实现工作运转,既可制冷又可加热,通过改变直流电流的极性来决定在同一制冷片上实现制冷或加热,温度范围为正温80℃到负温度55℃。

半导体制冷片工作时采用ATMEGA16芯片PWM功能对其进行控制,通过光耦控制达林顿管BD243的通断,以达到对制冷片输入电压的控制,进而控制其冷端的工作温度。半导体制冷片的工作驱动电路如图2所示,其中RL即半导体制冷片。在实际的制冷过程中,为保证制冷效率,要求制冷片工作电流的数量级为安培。而电路中的BD243能提供最大6 A的集电极电流,满足了制冷片的工作需求。4700μF的电容对制冷片的输入电压进行平滑,使得纹波系数小于10%,以保证制冷工况。

半导体制冷的热端散热,通过降低热端的温度,可以减少热端向冷端的传热,因此热端散热很重要,减少冷热端温差成为提高热电制冷性能的一个重要因素。在本次设计中,采用散热片加上空气强制对流散热的方式对半导体制冷进行散热,经过重复实验证明,该方式散热效果良好。

2.3 电流采样电路

为防止负载电流过高,需要检测经过负载的电流。采用康铜丝电阻对电流信号采样,通过康铜丝电阻采样的电压信号经过LM258放大,输入到ATMEGA16的模数转换器端口进行A/D转换。如图3所示。

2.4 温度检测电路

温度传感器使用的是DS18B20,与传统的热敏电阻相比,DS18B20能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根接口线(单总线接口)读写,单总线本身也可以向所挂接的DS18B20供电。其温度检测电路如图4所示。

3 系统软件设计

系统软件设计流程如图5所示,系统初始化后接着启动内部A/D转换器,采样蓄电池电压VBAT,若蓄电池电压小于正常电压VC,进入充电程序;若蓄电池电压正常,采样制冷目标物的温度Ta,若温度高于预设温度Th,启动制冷程序。

系统进入充电程序后,检测太阳能电池光照强度并进行判断,若光照强度低,系统休眠;若光照强度高于一定值,给蓄电池分段式充电并判断蓄电池电压状态,当蓄电池电压上升至正常电压,充电结束。

启动制冷程序后,判断当前温度Ta与Th的偏差、偏差变化率信号,经PID控制调节制冷驱动电路的PWM脉宽信号,对半导体制冷进行控制,当温度不高于预设温度Th,制冷结束并返回。

4 结束语

实验表明,该制冷系统结构简单,性能稳定,制冷效果良好。在工业储藏和日常的冷藏保鲜中可以得到广泛的推广应用。系统采用单片机控制技术,实现了基于太阳能供电的半导体制冷,在低能耗和环保方面显示出一定的优势。

本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,否则将严格追究法律责任;
Big-Bit 商务网

请使用微信扫码登陆

x
凌鸥学园天地 广告