大比特商务网 |资讯中心 |技术论坛 |解决方案 登录 注册 |数字刊 |招聘/求职
广告
广告
您的位置: 半导体器件应用网 >>行业要闻 >> 行业新闻 >> AI芯片为何受到如此追捧?

AI芯片为何受到如此追捧?

2018-10-11 10:40:47 来源:华强资讯

【大比特导读】人工智能技术迅猛发展的当下,要实现更高效、更人性化的AI,需要的不仅仅是架构、算法,还有帮助AI成型的基石,即AI芯片。近日,华为AI战略完整披露,众多AI芯片正式亮相,其强劲的性能令众人惊叹之时,也不禁让人产生疑惑,为何华为要为此改变自身集团愿景,AI芯片为何受到这么多的追捧?

人工智能技术迅猛发展的当下,要实现更高效、更人性化的AI,需要的不仅仅是架构、算法,还有帮助AI成型的基石,即AI芯片。作为人工智能得以运行的载体,AI芯片的发展无疑左右着人工智能技术的进步。近日,华为AI战略完整披露,众多AI芯片正式亮相,其强劲的性能令众人惊叹之时,也不禁让人产生疑惑,为何华为要为此改变自身集团愿景,AI芯片为何受到这么多的追捧?

初始阶段,由于不需考虑功耗等原因,人工智能的芯片可以追求高算力、高并发、高吞吐量,现阶段的解决方案一般是以“GPU+CPU”的异构模式来完成。同时,这种方案主要面向各大AI企业及实验室的训练环节,目前市场中由于AMD在此方面的长期缺失,导致深度学习GPU加速市场由NVIDIA一家独大。

AI芯片为何受到如此追捧?

但随着人工智能逐渐在云端展开应用,对AI芯片则提出了更多要求,在兼顾高性能的同时,还需要兼顾功耗及反应时间。而作为半定制的专用集成电路FPGA(现场可编程门阵列)恰好能够满足要求,其特点是能耗低,同时具有低延时、高吞吐的特性,可以满足人工智能在云端运行的需求。目前,FPGA市场Xilinx和Altera两家占据绝对垄断地位,市场份额接近90%。

未来,人工智能技术注定要进一步下放至终端设备,由于物理原因受限,因此芯片的功耗、面积、成本都需要进一步优化。主要解决方案为独立ASIC与SoC+IP两种;独立ASIC可以通过定制化的设计来实现性能更加优越、保密性更强的芯片,但缺点是开发周期较长,投入成本巨大,一般公司难以承受。SoC+IP在ASIC的开发弊端上具有很大的优势,但缺点是功能拓展性较弱,此前华为发布的昇腾系列AI芯片便按照此种方案开发。

虽然ASIC有种种开发上的困难,但是作为专用集成电路,其性能与功耗的优势却是显而易见的。在人工智能神经网络计算中,与传统计算有一定的区别,导致进行神经网络计算时,CPU、DSP、GPU都有算力、性能、能效等方面的不足,所以产生了专为神经网络计算而设计处理器或加速器的需求。由于ASIC属于定制类的芯片,涉及重新设计电路,因此生产的困难性颇大,目前市场中人工智能ASIC领域龙头当属Google TPU,其今年5月份发布的第三代TPU处理器本身的功能为第二代的两倍。

以手机为例,在智能手机这类设备之中一般都有GPU及CPU,可以为人工智能提供相应的运算能力支持,那为何还要专门开发AI芯片来进行这项工作呢?这里举一个简单的例子,去普通饭店吃饭时可以选择各种菜系,可能会比较美味,但若想要品尝正宗的菜肴,要去专门的饭店才有可能吃到。

AI芯片也是如此,虽然手机也会有GPU及CPU,但功耗低、重量轻、厚度薄才是其追求的方向。专用的AI芯片能够实现最高效率及能力,并且只占用很小的空间及更低的功耗。同时不会占用CPU及GPU太多的资源,可以保证手机在运行人工智能的同时还能进行其他操作。

当然AI芯片的重要性不止于此。以Google TPU1为例,其拥有256X256尺寸的脉动阵列,约为700MHz,拥有64K个乘法单元,每个单元单次可执行一个乘法及加法,即128K个操作。那么TPU1每秒的巅峰计算次数为约90Tops,当然这里只是理论数值,由于数据传输、存储、提取等原因,往往达不到峰值速率。

但是,相较于普通GPU及CPU方案来进行训练时,尤其目前神经网络尺寸越发庞大,参数更加繁杂,通常大型NN模型的训练时间长达几周甚至数月,而期间出现各种意外情况也会影响到训练的进度,如停电等。而采用了TPU1则可以在一顿饭的时间内完成,其效率大大提升。

而AI芯片虽然被冠以AI之名,但其本质还是一枚芯片。在经历中美贸易战初期的交锋后,国内企业已经纷纷醒悟过来若没有自己的核心技术,即使做到再强也不过一堆沙滩上的雕塑而已,浪潮一来即可覆灭。

在面对CPU及GPU被国外企业垄断的格局下,AI芯片成为了国内厂商新的突破点。目前来看,人工智能技术中美两国基本处于同一起跑线上,因此对于AI芯片的开发更加有利。但是芯片的设计并非一朝一夕之功,加之我国的芯片制造能力也非常薄弱,需要投入大量人力财力才可能得出有效的产品。国内目前对AI芯片投入研究的企业有寒武纪、华为海思、中兴微电子、阿里平头哥等,还有许多小型企业也纷纷跟风进入AI芯片领域中。

这是由于AI芯片制作并不同传统芯片一般,不需要花费精力制作IP内核,直接采用其他IP再加上架构层面的优化,针对业务需求对IP进行整合,因此制作的门槛大大降低,如上述提到的SoC+IP方案。华为昇腾系列的推出为AI国产芯片注入了一针强心剂,极大地振奋了国产AI芯片相关制造企业。

但值得注意的是,虽然华为推出了AI芯片,但其在手机端的应用依然有许多局限性,大多只应用于图片识别上。不仅华为如此,苹果及联发科也是如此,如何拓展未来AI的更多应用,成为了下一步将要迈出的关键。

本文由大比特资讯收集整理(www.big-bit.com)

分享到:
阅读延展
AI芯片
  • 华为发力AI产业,寒武纪将迎来激烈竞争

    华为发力AI产业,寒武纪将迎来激烈竞争

    华为的全联接2018大会在AI界刷屏,也让华为供应商——芯片设计公司寒武纪引来了不少议论。这次大会上,华为首次对外系统阐述其AI战略,推出了全栈全场景AI解决方案和算力超群的昇腾910、昇腾310两款AI芯片。

  • 华为发布两款AI芯片,称不与英伟达等直接竞争

    华为发布两款AI芯片,称不与英伟达等直接竞争

    每年一届华为HC大会再次来临。此次华为HC大会参会人数多达2万多人,占用了两个场馆,现场7种语言同声翻译。这次HC大会以“+智能 见未来”为主题,主要围绕人工智能技术。

  • 华为即将迎来重大转型?自研AI芯片有望10月问世

    华为即将迎来重大转型?自研AI芯片有望10月问世

    外媒The Information经常曝光的华为秘密行动“达芬奇计划(也叫D计划)”,将在10月10日的华为全连接(HC)大会上揭开最终答案。

  • 企业纷纷加入战局,AI芯片到底好在哪儿?

    企业纷纷加入战局,AI芯片到底好在哪儿?

    随着人工智能大热,AI芯片也随之成为AI邻域中最火热的话题之一,不仅英伟达、谷歌等国际巨头竞相推出新品,随着一些如寒武纪等AI芯片创业公司的诞生,国内百度、阿里等也纷纷涌入这一领域。我国在CPU、GPU等传统芯片领域,与国际距离相差较大情况下,AI芯片被认为是中国在AI领域实现弯道超车的希望区域。

  • 瑞芯微联合Arm、OPEN AI LAB首发AI开发平台

    瑞芯微联合Arm、OPEN AI LAB首发AI开发平台

    RK3399 EAIDK开发平台,是集参考设计、芯片调试和测试、芯片验证一体的硬件开发套件,依托OPEN AI LAB的AI核心软件平台AID以及瑞芯微RK3399芯片强大的多媒体接口和丰富的外围接口,可为开发者提供优质的硬件参考设计,使开发者仅需简单修改或不修改参考设计的模块电路,就可以完成AI人工智能产品的硬件开发。

  • 国产化速度加快 安防企业踏上“芯”征程

    国产化速度加快 安防企业踏上“芯”征程

    据悉,中国已经成为全球第一大半导体销售市场,2018年上半年销售额767.4亿美元,全球占比达到34%,然而国内企业市场占有率却很低,消耗量和自给率的巨大缺口,使得我国高端芯片依赖于进口。因此,国家出台了多项政策以促进国产高端芯片发展。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“大比特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得大比特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
Copyright Big-Bit © 1999-2016 All Right Reserved 大比特资讯公司 版权所有      未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任