哔哥哔特商务网旗下:
智能照明 智能家电 AI+IoT与智能家居 电机驱动与控制 快充与无线充 电驱动与BMS 锂电保护与BLDC 智能四表 汽车照明
广告
广告
意法半导体和MACOM成功开发射频硅基氮化镓原型芯片,取得技术与性能阶段突破
您的位置: 半导体器件应用网 >>行业要闻 >> 正文

意法半导体和MACOM成功开发射频硅基氮化镓原型芯片,取得技术与性能阶段突破

2022-05-19 17:39:18 来源:意法半导体

【哔哥哔特导读】2019年5月19日,中国 - 服务多重电子应用领域、全球排名前列的半导体公司意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)和世界排名前列的电信、工业、国防和数据中心半导体解决方案供应商MACOM技术解决方案控股有限公司(纳斯达克股票代码:MTSI,以下简称“MACOM”) 宣布,射频硅基氮化镓(RF GaN-on-Si)原型芯

·产品达到成本和性能双重目标,现进入认证测试阶段

·实现弹性量产和供货取得巨大进展

2019年5月19日,中国 - 服务多重电子应用领域、全球排名前列的半导体公司意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)和世界排名前列的电信、工业、国防和数据中心半导体解决方案供应商MACOM技术解决方案控股有限公司(纳斯达克股票代码:MTSI,以下简称“MACOM”) 宣布,射频硅基氮化镓(RF GaN-on-Si)原型芯片制造成功。基于这一成果,意法半导体和MACOM将继续携手,深化合作。

射频硅基氮化镓可为5G和6G移动基础设施应用带来巨大的发展潜力。初代射频功率放大器 (PA)主要是采用存在已久的横向扩散金属氧化物半导体(LDMOS) 射频功率技术,而GaN(氮化镓)可以给这些射频功率放大器带来更好的射频特性和更高的输出功率。此外,虽然GaN既可以在硅片上制造,也可以在碳化硅 (SiC) 晶圆上制造,但射频碳化硅基氮化镓(RF GaN-on-SiC)终究不是一种主流半导体制造工艺,且还要考虑和高功率应用争夺SiC晶圆,这些都可能会导致其成本更加昂贵。而意法半导体和 MACOM 正在开发的射频硅基氮化镓技术可以集成到标准半导体工业中,在实现具有竞争力的性能的同时,也有望带来巨大的规模经济效益。

意法半导体制造的射频硅基氮化镓原型晶圆和相关器件已达到成本和性能目标,完全能够与市场上现有的LDMOS和 GaN-on-SiC技术展开有效竞争。现在,这些原型即将进入下一个重要阶段——认证测试和量产。意法半导体计划将在 2022 年实现这一新的里程碑。为取得这一进展,意法半导体和 MACOM 已着手研究如何加大投入力度,以加快先进的射频硅基氮化镓产品上市。

意法半导体功率晶体管子产品部总经理兼执行副总裁 Edoardo Merli表示:“我们相信,这项技术的性能水平和工艺成熟度现已达到可以挑战现有的 LDMOS和射频GaN-on-SiC的程度。我们可以为无线基础设施等大规模应用带来成本效益和供应链优势。射频硅基氮化镓产品的商业化是我们与 MACOM 合作的下一个重要目标,随着合作项目不断取得进展,我们期待着释放这一激动人心的技术的全部潜力。”

MACOM 总裁兼首席执行官 Stephen G. Daly 表示:“我们推进硅基氮化镓技术商业化和量产工作继续取得良好进展。我们与意法半导体的合作是我们射频功率战略的重要组成部分,相信我们可以在硅基氮化镓技术可以发挥优势的目标应用领域赢得市场份额。”

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,

我们将及时更正、删除,谢谢。

  • 赞一个(
    0
    )
  • 踩一下(
    0
    )
分享到:
阅读延展
意法半导体 氮化镓
  • PI新品:集成氮化镓开关的高效、可编程开关IC

    PI新品:集成氮化镓开关的高效、可编程开关IC

    Power Integrations正式推出使用有源钳位的数字可编程反激式氮化镓开关IC,是适用广泛、高效,而且尺寸极小的产品系列。

  • 宏光半导体(6908.HK)氮化镓功率器件外延片产品正式投产

    宏光半导体(6908.HK)氮化镓功率器件外延片产品正式投产

    (2022年11月2日,香港)宏光半导体有限公司(「宏光半导体」,连同其附属公司统称「集团」; 股份代号:6908. HK)欣然宣布,集团近期已开始生产其自家6英寸氮化镓(「GaN」)功率器件外延片(「外延片」)。

  • 宽禁带半导体如何改进可再生能源设计

    宽禁带半导体如何改进可再生能源设计

    近年来,宽禁带(WBG)技术已经开始崭露头角,生产碳化硅(SiC)MOSFET和氮化镓(GaN)晶体管的供应商数量也稳步增长。但设计工程师还会出于各种原因而犹豫是否要使用宽禁带技术。

  • 氮化镓GaN第三代半导体材料

    氮化镓GaN第三代半导体材料

    GaN是一种新型的半导体材料,它是氮和镓的化合物,也是一种宽禁带半导体材料。GaN具备带隙大(3.4eV)、绝缘破坏电场大(2×106V/cm)及饱和漂移速度大(2.7×107cm/s)等特点,能够在更高压、更高频、更高温度的环境下运行。氮化镓通常用于微波射频、电力电子和光电子三大领域。

  • 使用集成 GaN 解决方案提高功率密度

    使用集成 GaN 解决方案提高功率密度

    氮化镓 (GaN) 是电力电子行业的热门话题,因为它可以使得 80Plus 钛电源、3.8kW/L 电动汽车 (EV) 车载充电器和 EV 充电站等设计得以实现。在许多应用中, GaN 能够提高功率密度和效率,因此它取代了传统的硅金属氧化物半导体场效应晶体管 (MOSFET)。

  • GaN是否具有可靠性?或者说我们能否如此提问?

    GaN是否具有可靠性?或者说我们能否如此提问?

    鉴于氮化镓 (GaN) 场效应晶体管 (FET) 能够提高效率并缩小电源尺寸,其采用率正在迅速提高。但在投资这项技术之前,您可能仍然会好奇GaN是否具有可靠性。令我惊讶的是,没有人询问硅是否具有可靠性。毕竟仍然有新的硅产品不断问世,电源设计人员对硅功率器件的可靠性也很关心。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
粤B2-20030274号   Copyright Big-Bit © 2019-2029 All Right Reserved 哔哥哔特 版权所有     未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任