有关“准确”的最新话题,搜索1 次
在设计用于准确监测和控制重要电气参数(包括电流、电压和功率)的系统中,模数转换器(ADC)使用同步采样来监测和控制电压和电流。速度和精度是其中一些重要的参数,它们有助于更大限度提升信号链的性能。此外,通道密度更高的ADC有助于缩小电路板尺寸,并增加通过给定电路板传输的数据量。
精密测试设备依靠精确的数据转换器,确保所有测量结果都能准确地反映受测器件的状态。在测试和测量中,任何偏移误差、增益误差或有效位数减少都将对测量结果产生负面影响。然而,遗憾的是,在高精度系统中,所有这些误差都无法完全避免。
印刷电路板组件(PCBA)制造商依靠在线测试(ICT)系统来检测制造工艺和元器件中存在的缺陷。制造商倾向于使用 ICT 系统来测试电子组件,因为这种系统不仅易于编程、能够轻松识别各种故障,还具有测试吞吐量高、误报率低以及故障诊断准确度高等诸多优势。
本文重点探讨了在不同应用场景下,氧化锌压敏电阻(MOV)基本技术指标发生变化的趋势,为智能监控提供可以准确分析的数据。
工程师在为采用时钟、数据转换器或放大器的医疗应用、测试和测量以及无线基础设施的噪声敏感型系统设计电源时,经常遇到的一个问题是如何提高准确度和精度,并最大限度降低系统噪声。
在所有描述世界日益电气化的流行语中,有一个词十分亮眼:电流检测。如果电流检测技术不可靠、不准确且难以用于设计,那么在太阳能电池阵列、电动汽车 (EV) 充电站或机器人领域令人耳熟能详的创新几乎都不可能实现。
电池测试、电化学阻抗谱和半导体测试等测试和测量应用需要准确的电流和电压输出直流电源。在环境温度变化为±5°C时,设备的电流和电压控制精度需要优于满量程的±0.02%。
采样电阻的工作原理是欧姆定律,即I=U/R,通过IC检测电阻两端的电压,用电压除以电阻标称值即得到通过电阻的电流值。因此采样电阻的精度直接影响到电流采样的准确性。
本文主要介绍了一些合理存放电线电缆的小技巧,我觉得大家都可以学习下,毕竟电线电缆存放的准不准确是有可能危害后期的应用实际效果的,所以这是很关键的。
随着电化学传感器技术的发展,万物互联时代的到来,市场对于相关检测产品小型化、数字智能化的需求也愈发显著。作为单芯片解决方案,信号链集成内置诊断功能将使传感器被更广泛地使用,同时提高准确性,延长传感器寿命,降低维护成本。