新型智能传感器在呼吸监视仪中的应用
2010-12-17 16:28:27
来源:大比特资讯
1 前言
当今,具有智能传感器技术为捡测头的呼吸医疗监视仪已经闻世, 从此,比较理想的解决了对各种情感和呼吸之间联系能作大量研究的问题,并且用来真实纪录一个人的呼吸状况及其变化. 值此本文对呼吸监视仪中用硅压阻式传感器(SPRT)与MAX1450或MAX1457信号调理器组成新型智能传感器及在技术方案中的功能作一分析介绍。
2 呼吸医疗监视仪与智能传感器及技术(其组成框图,见图1所示)
2.1 呼吸医疗监视仪(见图1右面所示)
该监视仪的用途是用来监视呼吸状况,并能给出大致的呼吸深度。这个监测仪监测一些可以用来评价焦虑程度的重要参数:呼吸频率、呼吸的均匀程度以及呼气和吸气之间的间歇。平静、积极的情绪通常会导致呼出长于吸入,二者时间之比的参数,从一个方面揭示人的焦虑程度。相对较高水平的胸呼吸(相对于腹呼吸)也可说明焦虑程度。监视仪对于胸呼吸的观察反映出监视仪具有量大的可视信息功能。
2.2 智能传感器技术
图1中的呼吸监视仪采用硅压阻式传感器(SPRT—Silicon piezoresistance transducer)检测吸入与呼出时对应压力的降低和增加。SPRT的输出被馈入一个MAX1450或MAX1457信号调理器芯片,而MAX1450或MAX1457信号调理器芯片又对SPRT的进行驱激励(或用电流源激励),其SPRT固有误差又被馈入MAX1450或MAX1457之后并被校正,然后将经过补偿的电压信号送入具有12位的模数转换器(ADC) MAX1202。ADC输出(数字化的压力信号)进入一个PC接口MAX3232,并被转换为RS-232电平。最后信号被传递到PC机系统,这样就可以显示出呼吸波形,并对以上所述参数进行分析。
3 关于硅压阻式传感器(SPRT)
3.1 硅压阻式传感器(SPRT)检测原理
硅压阻式传感器一般配置为一个紧密的惠斯登电桥。当有压力施加到SPRT的敏感电桥的桥臂时(见图2a所示),对角桥臂的电阻值R将发生相同方向、相同大小的改变,即R+ΔR和R-ΔR。当一个对角桥臂上的两个电阻值在压力的作用下增加时,另外一个对角桥臂的电阻值降低,反之亦然。对于SPRT半敏感电桥(见图2b所示),则只有半边桥臂的电阻值发生改变。不管是全桥还是半敏感电桥的传感器都具有高灵敏度(>10mv/v)和良好的线性和温度稳定性及无信号滞回等优点,其测量范围可上至破坏性极限。
3.2 硅压阻式传感器的应用
当今,由于新的IC技术已经能够精确校准SPRT,所以将硅压阻式传感器应用范围从中、低精度检测扩展到高端领域之中。解决了以往SPRT通常只能用在中、低精度检测,而在高端产品非要采用昂贵的应变计等不足之处。 但要应用硅压阻式传感器必须解决误差补偿-校准技术,才能提高精度。为此,首要的是应对硅压阻式传感器的误差作分析。
4 关于硅压阻式传感器(SPRT)误差
校准SPRT传感器的主要困难在干它们的误差幅度范围很宽,采用不同工艺生产的SPRT传感器具有不同类型的误差和误差范围。甚至由同一个制造商提供的同一型号传感器的误差幅度,彼此之间也会有轻微的差异。SPRT传感器的误差因素包括;满偏信号随温度变化的强烈非线性(高达1%ºK);很大的初始失调(可至满偏的100%或更高);以及失调随温度的强烈漂移等。在一定限度内,这些缺陷可以由电子电路加以补偿。
一定温度下,图2所示的两种类型SPRT桥路电阻(Vcc和地之间的等效电阻)能够在很宽的压力范围内保持相当的恒定,然而,随着温度的上升,桥路电阻显著增加,如果电桥由恒流源驱动,桥路电压(指Vcc和地之间的等效电阻与恒流源输出电流的乘积)就会增加。当桥路电压随着温度的升高而增大时,则SPRT灵敏度也随之升高。另一方面,如果保持桥路电压恒定,SPRT的压力灵敏度又会随着温度的升高而降低。因此,SPRT的压力灵敏度受两种互相对立的因素之影响:温度和受温度影响的桥路电压。这种桥路电阻或桥路电压的变化可以彼现代信号调理电路IC加以利用,来校正SPRT灵敏度在温度范围内的误差。值得一提的是,此类信号调理电路IC均可通过桥路电阻的变化来校正灵敏度随愠度的改变。根据,SPRT产生误差的主要因素的分析,便可有的放矢是进行校正与补偿。以下将对目前常用的传统校正与现代校正及简化补偿方法作介绍。
5 传统校正方法
图3电路为传统校正方案。
它可以补偿SPRT精度至适当水平,并可以对SPRT失调、失调的温度漂移(OFFSETTC)以及SPRT灵敏度的温度漂移进行调整。而与SPRT灵敏度温度漂移相关的是满偏榆出(FSO)的温度漂移,这两个参数(指SPRT灵敏度温度漂移与满偏榆出的温度漂移)的温度特性互成正比,电路中的调零电阻Rjz用来补偿传感器在室温下的失调电压,温度敏感电阻Rts和Rtz(或R'tz)用于校正温度误差。前面提到,桥路电阻随着温度上升而增加,使传感器两端的电压Vo+Vo-(VINPVINM)也增加,这个增加的电压△Vo+Vo-会使传感器的灵敏度上升,也就是说,在给定压力下它将输出更高的电压。
然而,如果保持传感器两端电压恒定,传感器的灵敏度就会随着温度的上升而降低(或称负向灵敏度系数),但因为桥路电阻受温度影响而增加时,它所引起的灵敏度正向变化系数是大于负向灵敏度系数,所以,满偏输出(FSO)趋向于随着温度增加而增加。电阻器Rts可以在温度上升时旁路掉一部分桥路电流,从而抵消上述效应。类似地,Rtz或R'tz可对失调的漂移进行校正。电路中选择Rts还是R'tz取决于失调的温度漂移方向。
这种该传统校正方法的优点是程式简单、廉价,但主要问题是各个补偿元件之间互相影响,使校准非常困难,并限制了所能达到的精度,这种校正技术也不便于采用电子调整。
6 现代校正-补偿技术
由于SPRT的误差幅度范围很宽,因而必须要用通过现代与简化补偿法来校准。目前现代校正-补偿技术是采用MAX145新型信号调理芯片与SPRT的组合,即成智能传感器与技术。
用一片信号调理MAXl457 IC以驱动呼吸监视仪的硅压阻式传感器(SPRT),并校正传感器的误差。MAXl457它带一个用于驱动传感器的受控电流源和一个用以采样传感器桥路电压的ADC(模数转换器)。
MAXl457还包括个可编程增益放大器(PGA),用于放大传感器的差分输出,以及5个数DAC(数模转换器),用于校正各种不同的传感器误差。由于传感器输出的是微弱信号,PGA的输出电压还不足以驱动ADC为此,MAXl457的内置运放可用来提升PGA的输出至合适的电平。
由于桥路电压随温度而上升,这种温度相关性可以用来补偿满偏输出(FSO- Full span output)的温度误差。对于恒流源激励电桥,满偏输出(FSO)随着温度上升而下降,造成了满偏输出的温度相关误差(FSOTC)。然而,如果使桥路电压随着温度以一定的速率上升,恰好补偿掉满偏灵敏度随温度的下降,则满偏输出(FSO)将保持恒定。
6.1 那MAXl457是如何利用这种方法校正温度引起的满偏输出(FSO)误差的,见图4所示。
首先,由ADC对桥路电压进行量化,根据量化结果,找出一个预先计开算好的四种校正系数己保存于EEPROM内)送人FSOTC DAC。然后DAC输出电压对桥路激励电流进行调整。调整后的激励电流改变了桥路电压,从而补偿了特定温度下,因传感器的灵敏度改变造成的满偏输出(FSO)误差。为实现平滑校正,桥路电压被用作FSOTC DAC的参考输入,在相邻两个数字补偿点(由ADC提供给EEPROM)之间进行模拟补偿。同样的方法被用于补偿失调的温度漂移(OFFSETTC),所不同的是,OFFSETTC DAC的输出电压被馈人PGA输出端的求和节点(而不是MAX1457的电流源)。
6.2 值此对上述四种温度校正系数的计算步骤作一说明
首先,将传感器和MAXl457置于最低温度获取不同压力下的传感器数据,然后,再将传感器和MAXl457置于最高温度下获取不同压力下的传感器数据。利用这些极限温度点的数据,专为MAXl457设计的应用软件可计算出四种校正系数:满偏输出(FSO)、满偏输出的温度相关误差(FSOTC)、偏移-失调(Offset)、失调的温度偏移(OFFSETTC),这四种系数可以修正SPRT的一阶误差。
为获得0.1%的精度,MAXl457允许在特定温度进行补偿,只需对每个规定温度计算FSOTC和OFFSETTC由用户决定校准点的数量(最多至120点)。如果传感器误差具有良好的可重复性,此种SPRT与MAXl457组合可获得优于0.1%的精度。
MAXl457的补偿技术相对于图3所示的传统方法具有明显优势。MAXl457消除了补偿元件之间的相互影响,这得益于相互独立的失调和满度调整:失调在PGA输出端进行补偿,而FSO的修正通过电流源实现。另一个好处是,由于针对不同温度点进行特定修正,获得更高的精度成为可能。这种方法本质上优于采用外部电阻的方式,因为后者无法在特定温度点对传感器进行精确补偿。
由于MAX1457所提供的精度可远高于一个呼吸监视仪的要求,之所以选择它,主要是因为它内部还包含一个附加的运放,可以对呼吸监视仪传感器的低电平信号进行放大。由于MAX1457使监视仪可以工作在很宽的温度范围,应用SPRT和MAX1457组合可获得优异的精度,为此它能应用于空间探测及潜水呼吸器等领域。
7 实用的简化校正方案
真因为MAX1457所提供的精度可远高于一个呼吸监视仪的要求,为此即没有必要采用16位分辨率的DAC进行校正。通常可采用MAX1450信号调理器的简化校补偿方案(见图5所示)。
7.1 MAX1450信号调理器的功能本质与MAX1457相同,只是用电阻代替DAC来进行误差校正。因MAX1450采用比MAX1457少得多的校准点,其精度为1%。通常被用于混合方案,该方案将MAX1450和激光微调电阻(图5所示的外接微调电阻)相结合提供了一种低成本的解决方案,即用MAX1450信号调理器配合外部激光微调电阻可提供1%精度。调整图5中的RFSOA微调电阻用来设定初始(FSO)灵敏度,而失调温度漂移(OFFSETTC)的补偿是通过ROFFA和ROTCA微调电阻的调整来实现。
7.2 对MAX1450引脚功能作一介绍:
A0程控放大器(PGA)增益设置最低位输入;
A1程控放大器增益设置;
A2程控放大器(PGA)增益设置最高位输入;
SOTC程控放大器电流过流控制开关;
SOFF程控放大器电源关;
OFFTC温度偏移校正输入;
OFFSET偏移输入;
BBUF带缓冲电桥电压输出;
FSOTRIM电桥驱动电流设置输入;
OUT程控放大器输出电压;
ISRC电流源基准;
BDRIVE激励电流输出;
INM传感器负信号输出;
INP传感器正信号输出;
VDD电源电压;
VSS地。
8 结束语
由于新的信号调理器IC技术的发展,已经能够精确校准SPRT误差,压阻式传感器除了在医用领域中应用外,还可拓宽到其它工业安全以及军事领域等高端产品之中。这从上述几种设计方案可看出,通过应用硅压阻式传感器(SPRT)与MAX1450、 MAX1457等信号调理器芯片所组成的智能传感器使研发的新型呼吸监视仪具有精度高成本低技术成熟之的特点,也证明了在高端产品中无需要用昂贵的应变计的设想是可从实现的。
当今,具有智能传感器技术为捡测头的呼吸医疗监视仪已经闻世, 从此,比较理想的解决了对各种情感和呼吸之间联系能作大量研究的问题,并且用来真实纪录一个人的呼吸状况及其变化. 值此本文对呼吸监视仪中用硅压阻式传感器(SPRT)与MAX1450或MAX1457信号调理器组成新型智能传感器及在技术方案中的功能作一分析介绍。
2 呼吸医疗监视仪与智能传感器及技术(其组成框图,见图1所示)
2.1 呼吸医疗监视仪(见图1右面所示)
该监视仪的用途是用来监视呼吸状况,并能给出大致的呼吸深度。这个监测仪监测一些可以用来评价焦虑程度的重要参数:呼吸频率、呼吸的均匀程度以及呼气和吸气之间的间歇。平静、积极的情绪通常会导致呼出长于吸入,二者时间之比的参数,从一个方面揭示人的焦虑程度。相对较高水平的胸呼吸(相对于腹呼吸)也可说明焦虑程度。监视仪对于胸呼吸的观察反映出监视仪具有量大的可视信息功能。
2.2 智能传感器技术
图1中的呼吸监视仪采用硅压阻式传感器(SPRT—Silicon piezoresistance transducer)检测吸入与呼出时对应压力的降低和增加。SPRT的输出被馈入一个MAX1450或MAX1457信号调理器芯片,而MAX1450或MAX1457信号调理器芯片又对SPRT的进行驱激励(或用电流源激励),其SPRT固有误差又被馈入MAX1450或MAX1457之后并被校正,然后将经过补偿的电压信号送入具有12位的模数转换器(ADC) MAX1202。ADC输出(数字化的压力信号)进入一个PC接口MAX3232,并被转换为RS-232电平。最后信号被传递到PC机系统,这样就可以显示出呼吸波形,并对以上所述参数进行分析。
3 关于硅压阻式传感器(SPRT)
3.1 硅压阻式传感器(SPRT)检测原理
硅压阻式传感器一般配置为一个紧密的惠斯登电桥。当有压力施加到SPRT的敏感电桥的桥臂时(见图2a所示),对角桥臂的电阻值R将发生相同方向、相同大小的改变,即R+ΔR和R-ΔR。当一个对角桥臂上的两个电阻值在压力的作用下增加时,另外一个对角桥臂的电阻值降低,反之亦然。对于SPRT半敏感电桥(见图2b所示),则只有半边桥臂的电阻值发生改变。不管是全桥还是半敏感电桥的传感器都具有高灵敏度(>10mv/v)和良好的线性和温度稳定性及无信号滞回等优点,其测量范围可上至破坏性极限。
3.2 硅压阻式传感器的应用
当今,由于新的IC技术已经能够精确校准SPRT,所以将硅压阻式传感器应用范围从中、低精度检测扩展到高端领域之中。解决了以往SPRT通常只能用在中、低精度检测,而在高端产品非要采用昂贵的应变计等不足之处。 但要应用硅压阻式传感器必须解决误差补偿-校准技术,才能提高精度。为此,首要的是应对硅压阻式传感器的误差作分析。
4 关于硅压阻式传感器(SPRT)误差
校准SPRT传感器的主要困难在干它们的误差幅度范围很宽,采用不同工艺生产的SPRT传感器具有不同类型的误差和误差范围。甚至由同一个制造商提供的同一型号传感器的误差幅度,彼此之间也会有轻微的差异。SPRT传感器的误差因素包括;满偏信号随温度变化的强烈非线性(高达1%ºK);很大的初始失调(可至满偏的100%或更高);以及失调随温度的强烈漂移等。在一定限度内,这些缺陷可以由电子电路加以补偿。
一定温度下,图2所示的两种类型SPRT桥路电阻(Vcc和地之间的等效电阻)能够在很宽的压力范围内保持相当的恒定,然而,随着温度的上升,桥路电阻显著增加,如果电桥由恒流源驱动,桥路电压(指Vcc和地之间的等效电阻与恒流源输出电流的乘积)就会增加。当桥路电压随着温度的升高而增大时,则SPRT灵敏度也随之升高。另一方面,如果保持桥路电压恒定,SPRT的压力灵敏度又会随着温度的升高而降低。因此,SPRT的压力灵敏度受两种互相对立的因素之影响:温度和受温度影响的桥路电压。这种桥路电阻或桥路电压的变化可以彼现代信号调理电路IC加以利用,来校正SPRT灵敏度在温度范围内的误差。值得一提的是,此类信号调理电路IC均可通过桥路电阻的变化来校正灵敏度随愠度的改变。根据,SPRT产生误差的主要因素的分析,便可有的放矢是进行校正与补偿。以下将对目前常用的传统校正与现代校正及简化补偿方法作介绍。
5 传统校正方法
图3电路为传统校正方案。
它可以补偿SPRT精度至适当水平,并可以对SPRT失调、失调的温度漂移(OFFSETTC)以及SPRT灵敏度的温度漂移进行调整。而与SPRT灵敏度温度漂移相关的是满偏榆出(FSO)的温度漂移,这两个参数(指SPRT灵敏度温度漂移与满偏榆出的温度漂移)的温度特性互成正比,电路中的调零电阻Rjz用来补偿传感器在室温下的失调电压,温度敏感电阻Rts和Rtz(或R'tz)用于校正温度误差。前面提到,桥路电阻随着温度上升而增加,使传感器两端的电压Vo+Vo-(VINPVINM)也增加,这个增加的电压△Vo+Vo-会使传感器的灵敏度上升,也就是说,在给定压力下它将输出更高的电压。
然而,如果保持传感器两端电压恒定,传感器的灵敏度就会随着温度的上升而降低(或称负向灵敏度系数),但因为桥路电阻受温度影响而增加时,它所引起的灵敏度正向变化系数是大于负向灵敏度系数,所以,满偏输出(FSO)趋向于随着温度增加而增加。电阻器Rts可以在温度上升时旁路掉一部分桥路电流,从而抵消上述效应。类似地,Rtz或R'tz可对失调的漂移进行校正。电路中选择Rts还是R'tz取决于失调的温度漂移方向。
这种该传统校正方法的优点是程式简单、廉价,但主要问题是各个补偿元件之间互相影响,使校准非常困难,并限制了所能达到的精度,这种校正技术也不便于采用电子调整。
6 现代校正-补偿技术
由于SPRT的误差幅度范围很宽,因而必须要用通过现代与简化补偿法来校准。目前现代校正-补偿技术是采用MAX145新型信号调理芯片与SPRT的组合,即成智能传感器与技术。
用一片信号调理MAXl457 IC以驱动呼吸监视仪的硅压阻式传感器(SPRT),并校正传感器的误差。MAXl457它带一个用于驱动传感器的受控电流源和一个用以采样传感器桥路电压的ADC(模数转换器)。
MAXl457还包括个可编程增益放大器(PGA),用于放大传感器的差分输出,以及5个数DAC(数模转换器),用于校正各种不同的传感器误差。由于传感器输出的是微弱信号,PGA的输出电压还不足以驱动ADC为此,MAXl457的内置运放可用来提升PGA的输出至合适的电平。
由于桥路电压随温度而上升,这种温度相关性可以用来补偿满偏输出(FSO- Full span output)的温度误差。对于恒流源激励电桥,满偏输出(FSO)随着温度上升而下降,造成了满偏输出的温度相关误差(FSOTC)。然而,如果使桥路电压随着温度以一定的速率上升,恰好补偿掉满偏灵敏度随温度的下降,则满偏输出(FSO)将保持恒定。
6.1 那MAXl457是如何利用这种方法校正温度引起的满偏输出(FSO)误差的,见图4所示。
首先,由ADC对桥路电压进行量化,根据量化结果,找出一个预先计开算好的四种校正系数己保存于EEPROM内)送人FSOTC DAC。然后DAC输出电压对桥路激励电流进行调整。调整后的激励电流改变了桥路电压,从而补偿了特定温度下,因传感器的灵敏度改变造成的满偏输出(FSO)误差。为实现平滑校正,桥路电压被用作FSOTC DAC的参考输入,在相邻两个数字补偿点(由ADC提供给EEPROM)之间进行模拟补偿。同样的方法被用于补偿失调的温度漂移(OFFSETTC),所不同的是,OFFSETTC DAC的输出电压被馈人PGA输出端的求和节点(而不是MAX1457的电流源)。
6.2 值此对上述四种温度校正系数的计算步骤作一说明
首先,将传感器和MAXl457置于最低温度获取不同压力下的传感器数据,然后,再将传感器和MAXl457置于最高温度下获取不同压力下的传感器数据。利用这些极限温度点的数据,专为MAXl457设计的应用软件可计算出四种校正系数:满偏输出(FSO)、满偏输出的温度相关误差(FSOTC)、偏移-失调(Offset)、失调的温度偏移(OFFSETTC),这四种系数可以修正SPRT的一阶误差。
为获得0.1%的精度,MAXl457允许在特定温度进行补偿,只需对每个规定温度计算FSOTC和OFFSETTC由用户决定校准点的数量(最多至120点)。如果传感器误差具有良好的可重复性,此种SPRT与MAXl457组合可获得优于0.1%的精度。
MAXl457的补偿技术相对于图3所示的传统方法具有明显优势。MAXl457消除了补偿元件之间的相互影响,这得益于相互独立的失调和满度调整:失调在PGA输出端进行补偿,而FSO的修正通过电流源实现。另一个好处是,由于针对不同温度点进行特定修正,获得更高的精度成为可能。这种方法本质上优于采用外部电阻的方式,因为后者无法在特定温度点对传感器进行精确补偿。
由于MAX1457所提供的精度可远高于一个呼吸监视仪的要求,之所以选择它,主要是因为它内部还包含一个附加的运放,可以对呼吸监视仪传感器的低电平信号进行放大。由于MAX1457使监视仪可以工作在很宽的温度范围,应用SPRT和MAX1457组合可获得优异的精度,为此它能应用于空间探测及潜水呼吸器等领域。
7 实用的简化校正方案
真因为MAX1457所提供的精度可远高于一个呼吸监视仪的要求,为此即没有必要采用16位分辨率的DAC进行校正。通常可采用MAX1450信号调理器的简化校补偿方案(见图5所示)。
7.1 MAX1450信号调理器的功能本质与MAX1457相同,只是用电阻代替DAC来进行误差校正。因MAX1450采用比MAX1457少得多的校准点,其精度为1%。通常被用于混合方案,该方案将MAX1450和激光微调电阻(图5所示的外接微调电阻)相结合提供了一种低成本的解决方案,即用MAX1450信号调理器配合外部激光微调电阻可提供1%精度。调整图5中的RFSOA微调电阻用来设定初始(FSO)灵敏度,而失调温度漂移(OFFSETTC)的补偿是通过ROFFA和ROTCA微调电阻的调整来实现。
7.2 对MAX1450引脚功能作一介绍:
A0程控放大器(PGA)增益设置最低位输入;
A1程控放大器增益设置;
A2程控放大器(PGA)增益设置最高位输入;
SOTC程控放大器电流过流控制开关;
SOFF程控放大器电源关;
OFFTC温度偏移校正输入;
OFFSET偏移输入;
BBUF带缓冲电桥电压输出;
FSOTRIM电桥驱动电流设置输入;
OUT程控放大器输出电压;
ISRC电流源基准;
BDRIVE激励电流输出;
INM传感器负信号输出;
INP传感器正信号输出;
VDD电源电压;
VSS地。
8 结束语
由于新的信号调理器IC技术的发展,已经能够精确校准SPRT误差,压阻式传感器除了在医用领域中应用外,还可拓宽到其它工业安全以及军事领域等高端产品之中。这从上述几种设计方案可看出,通过应用硅压阻式传感器(SPRT)与MAX1450、 MAX1457等信号调理器芯片所组成的智能传感器使研发的新型呼吸监视仪具有精度高成本低技术成熟之的特点,也证明了在高端产品中无需要用昂贵的应变计的设想是可从实现的。
本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,否则将严格追究法律责任;
暂无评论