关于RS-485总线电流要求与收发器驱动能力

2011-06-13 09:44:04 来源:德州仪器(TI) 点击:1207

摘要:  本文介绍了 RS-495 标准收发器的最小总线电流要求约为 60 mA,并表明在更低共模电压下工作时可以增加 32 UL 规定共模负载。

关键字:  工业,  收发器,  电阻器,  测试电路

越来越多的人在问关于 EIA/TIA-485(俗称 RS-485 数据传输标准)基本概念的一些问题,这一事实表明未来数年 RS-485 仍会在各种工业接口中起到举足轻重的作用。

本文中,我们将为您解答许多常见和最新的问题,例如:

1:RS-485 收发器可以驱动多大的总线电流?

2:可以驱动 32 以上单位负载吗?

要回答第一个问题,我们需要研究图 1 所示典型 RS-485 数据链路。我们看到,除驱动通过端接电阻器的差分电流以外,驱动器还必须驱动通过许多接收机输入阻抗的电流,以及通过位于总线上的故障保护网络的电流。这些阻抗在差分信号线路和接地之间形成电流通路,同时影响了 A 和 B 信号线的电流,且影响程度相同。因此,可以将它们表示为共模阻抗 RCM。

图1:典型RS-485数据链路。(电子系统设计)

图1:典型RS-485数据链路。

为了对最大共模负载进行定义,RS-485 使用了一个单位负载的理论概念,其定义了一个 12kΩ 共模负载电阻。这样一来,一个单位负载 (1UL) 收发器便代表在每个接地相关总线端有一个RINEQ = 12 kΩ 的等效输入电阻。

RS-485 规定一个收发器必须能够驱动高达 32 单位负载的总共模负载,同时能够给 RD = 60Ω 差分电阻提供 VOD = 1.5 V 的差分输出电压。另外,该标准还要求在 VCM = –7 V 到 +12 V 共模电压范围保持这种驱动能力,以便允许驱动器和接收机接地之间的大接地电位差,其一般会出现在远距离数据链路中。

60 Ω 差分电阻代表两个并联 120 Ω 端接电阻器的电阻值,而 32 单位负载得到的总共模负载电阻为 VCM = 12 kΩ / 32 = 375 Ω。共模负载条件下收发器驱动能力测试的相应测试电路也指定为 RS-485 标准,其如图 2 所示。

图2:共模负载的驱动器测试电路。(电子系统设计)

图2:共模负载的驱动器测试电路。

假设非反相驱动器输出 A 具有更高的正总线电压,则其电流计算方法为:

电子系统设计

而反相输出 B 的电流计算方法如下:

电子系统设计

由于数据传输期间 A 和 B 输出不断改变极性,因此最好是使用一些通用术语来表示输出电流方程式。所以,更多正输出(或者高输出)必须拉出电流:

电子系统设计

而更少正输出(或者低输出)必须注入电流:

电子系统设计

图 3 显示了在规定共模电压范围,驱动 RCM = 375 Ω 最大共模负载 (32 UL) 的一个 5V 收发器的最小输出电流要求。用于绘制该图的参数假设为 VOS = 2.5 V、VOD = 1.5 V、RD = 60 Ω 和 RCM = 375 Ω。

图3:5V收发器的总线电流要求。(电子系统设计)

图3:5V收发器的总线电流要求。

该图表明,一个符合标准的 5V 收发器必须能够拉出和注入高达 53 mA 的输出电流。实际上,市场上销售的大多数 RS-485 收发器,都具有 60 mA 及以上的最小注入和拉出能力。

就此而言,需要对 32 单位负载的最大共模负载进行一些重要的澄清,以消除许多普遍存在的误解。

· RS-485 中规定的 32 单位负载的最大共模负载,指的是存在于差分信号对和信号地线之间的任何共模负载,不仅仅只是接收机输入。例如,一个外部故障保护电阻器网络已经使用了 22 UL 的总负载,从而使得仅有 10 UL 可用于接收机输入。剩余的 10 UL,可以通过使用 10 x 1 UL 收发器或者至多 80 x 1/8 UL 收发器,来让其得到利用。

· 32 UL 最大负载的规定,针对 –7 V 到 +12V 的整个 VCM 范围。如图 3 所示,让 VCM 范围变窄会降低输出电流,并让驱动器储存一些电流。之后,可以利用这些储存电流来驱动更多的单位负载。驱动器和接收机接地之间地电位差 (GPD) 较小的数据链路中,可以应用这一原则,其解答了我们在一开始提出的第二个问题。

图 4 显示了单位负载数,其为 GPD 振幅的函数。请注意,GPD 并非为 DC 电压,而是 AC 电压,其在系统电源电源频率的第三谐波变换。

图4:单位负载数为 GPD 振幅的函数。(电子系统设计)

图4:单位负载数为 GPD 振幅的函数。

小结

本文介绍了 RS-495 标准收发器的最小总线电流要求约为 60 mA,并表明在更低共模电压下工作时可以增加 32 UL 规定共模负载。

本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,否则将严格追究法律责任;
Big-Bit 商务网

请使用微信扫码登陆

x
凌鸥学园天地 广告