基于Matlab 的孤立逆变源的设计方案

2013-10-11 16:39:34 来源:http://ic.big-bit.com/|3 作者:刘江伟,王娜,路改香 点击:1106

基于Matlab软件平台,采用双环控制策略设计的$逆变源,利用Matlab-Simulink-SimPowerSystems的工具箱进行建模仿真,验证了本文所设计方案的可行性和有效性。

0 引言

随着太阳能、风能等可再生能源的发展,分布式发电以其环境污染少、能源综合利用率高、供电可靠等优点,逐渐成为了各国家竞相研究的热点,在美国、欧洲等技术成熟的国家和地区,以将其广泛应用在微电网中。逆变电源作为一种有效的电力供应源,成为了$微电网的重要组成部分,并在微电网的研究和实施中得到了广泛的应用。

本文设计的基于PWM 的$孤立逆变电源,其控制模型采用电压外环和电流内环双环控制策略,电压外环和电流内环均采用PI控制方式。应用Matlab软件建立实验模型进行仿真,通过仿真验证了控制系统设计方案的合理性,以及双环控制策略的应用效果,分析仿真结果证明了系统设计方案的合理性和有效性。

1 PWM逆变器的电路结构和工作原理

在交-直-交变频器中,通常要求直流电路采用$可控硅整流电路,如图1(a)所示。逆变输出的电压Uo 的大小可以通过改变Ud 的大小来控制。通过对逆变器触发电路频率的控制,可以改变输出电压Uo 的频率。但是,这种变频电路存在有缺陷:如果输出的交流电压为含有较多谐波的矩形波,这无论是对负载或是交流电网都是不利的;如果输出功率用相控方式来调节,就会使输入功率因数降低,同时由于有滤波大电容存在于中间直流环中,使得调节输入功率时惯性较大,系统响应缓慢。

为解决上述缺陷,可以采用如图1(b)所示的变频电路。这种电路通常称为PWM(Pulse Width Modula-tion)型变频电路,其基本的工作原理是对逆变电路中$开关器件的通断进行有规律的控制,使输出端得到等幅不等宽的脉冲列,并用这些脉冲列来替代正弦波。按要求的规则对脉冲列的各脉冲宽度进行调制,既可改变电路输出电压的大小,又可以改变输出电压的频率。

 

 

2 孤立逆变源双环控制策略

如图2 所示,为设计的基于PWM $孤立逆变源的电压电流双环控制原理图。控制外环为电压控制环,电压Vabc 的反馈值由测量模块2测得,并与给定的参考值进行比较,误差信号经过PI控制器调节后作为电流内环基准;控制内环为电流控制环,由测量模块1测得的反馈的电流值Iabc1 与电流基准进行比较产生的误差信号,经过$PWM发生器离散化之后产生PWM控制信号。

 

 

PI控制器是具有比例-积分控制规律的控制器,其框图如图3 所示,其控制规律是指控制器的输出信号u(t)既反映输入信号 e(t),又反映 e(t)对t的积分,即:

 

 

式中:kP 为可调比例系数,TI 为可调积分时间常数。

在控制工程实践中,$PI控制器主要用来改善控制系统的稳态性能。PI参数的准确设置,对控制效果至关重要,可调积分时间常数TI 会影响系统达到稳定的时间和稳定性,可调比例系数kP 会对系统的响应时间产生影响。在本文设计的孤立逆变源中,利用工程整定的方法,对外环电压反馈值vabc 进行调节的PI调节器,其参数整定值为:kP =0.25,TI =300;对内环电流反馈Iabc1 进行调节的PI调节器,其参数整定值为:kP =1.25,TI =1.
[page]

3 仿真结果

根据控制方案,设计的孤立逆变源的建模仿真使用Matlab-Simulink-SimPowerSystems软件平台来完成。仿真时间设定为0.3 s,仿真数据均采用标幺值,仿真模型如图5所示。设计的电压外环和电流内环的PI控制模型分别如图6、图7所示。

 

 

 

 

 

 

模型仿真的主要参数如表1所示。

 

 [page]

3.1 逆变源仿真结果

根据表1 的参数设置进行建模仿真,仿真开始后,逆变电源在很短暂的时间就达到了稳态运行,经测量模块2测量输出的电流Iabc 和电压Vabc ,测量模块1测量输出的电流Iabc1 ,以及调制系数m 的输出波形如图7、图8所示。

 

 

逆变电源运行达到稳态后,由图7输出的电压和电流波形分析可知,逆变电源达到稳后的运行状态非常稳定,达到了预期的效果。由图8可知,调制系数m 在经过短暂的震荡之后收敛到0.85~0.9稳定的区间,表明了调制控制的稳定性。

3.2 电压控制PI仿真结果

逆变电源运行达到稳态后,电压外环控制模块的PI调节的输入信号及经过PI调节后的输出信号如图9所示。由图9 的输出波形可知,输入到PI的Vd,Vq 信号经过短暂的波动收敛到0,并输入到PI调节器中,经PI调节器调节后输出较为稳定的误差信号,作为电流内环控制的基准信号,保证了电流内环控制的稳定性。

 

 

3.3 电流控制PI仿真结果

逆变电源运行达到稳态后,电流内环控制模块经过PI 调节后的输出Vd,Vq 和电压Uabc 的波形如图10 所示。

在电流内环调节中,电流经d-q 变换得到信号与经电压外环控制后输入的基准信号作比较,比较结果作为电流控制环的PI调节输入信号,经PI调节后输出稳定的控制信号Vd,Vq,如图10所示,输出信号经过短暂的震荡收敛到了一个稳定的状态,表明了电流内环控制系统稳定性。输出的电压Uabc作为PWM发生器的输入信号,经过PWM发生器离散化之后产生PWM控制信号,形成一个闭环控制系统,保证了整个控制系统的稳定运行。

 

 

4 结语

本文通过分析分布式发电作为高效、清洁的发电方式,以其具有投资少、可与环境兼容等优点,及其在微电网中得到了广泛的应用。逆变电源作为微电网的重要组成部分,其设计运行的稳定性、有效性和可行性,直接会影响到整个微电网供电的电能质量。方案设计的电压外环和电流内环双环控制的逆变电源,电压外环可以增加系统的稳定性和消除静态误差,电流内环可以提高系统的快速性和动态特性。采用PI 控制策略,利用Matlab 软件建立了实验仿真平台。仿真结果表明,本方案所设计的逆变源具有很好的稳态性能和动态性能,控制系统设计合理稳定,参数的选择合理有效。

本文由大比特收集整理(www.big-bit.com)

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。
Big-Bit 商务网

请使用微信扫码登陆

x
凌鸥学园天地 广告