基于90E46的单相智能电表设计方案
IDT的90E46顺应$智能电表的发展趋势,在业界推出的第一款集成硬件高精度宽量程计量模块,ARM 32位 Cortex M0 高性能低功耗MCU内核,LCD驱动和带温度补偿功能的高精度实时时钟(RTC)于一体真正意义上的系统级芯片(SoC)。
智能电能表作为智能电网的重要组成部分,其技术标准也在不断地发展之中,使得相应的芯片技术也在日益提高。以市场需求量最大的$单相智能电表为例,其技术发展主要表现在以下几个方面:
计量准确度要求越来越高,电流范围越来越宽,从之前的5(20)A到现在的5(60)A,再到1(100)A,早期的计量芯片已无法满足当前电能表设计的要求,高精度、宽量程的计量芯片被广泛应用。
数据和事件处理要求越来越多,使得$MCU的运算能力和程序容量不断提高,传统的8-bit MCU会逐渐被32-bit MCU所取代。
智能电能表作为智能电网的最终节点,其数据通信要求越来越强,对外的通信方式有RS485、PLC、红外,并且要求各通信接口相互独立并能同时运行;这要求用于$电能表设计的MCU具有丰富的硬件通信接口。
IDT的90E46就是顺应智能电能表的这种发展趋势,在业界推出的第一款集成硬件高精度宽量程计量模块,ARM 32位 Cortex M0 高性能低功耗MCU内核,LCD驱动和带温度补偿功能的高精度实时时钟(RTC)于一体真正意义上的系统级芯片(SoC)。在计量动态范围5000:1 内,有功电能准确度优于 0.1%,无功电能准确度优于0.2%,且只需要单点校准;实时时钟误差小于±0.5秒/天。
90E46芯片与硬件设计
90E46芯片简介
90E46是业界集成度最高的高精度宽量程单相电能计量SoC,在IDT既有的宽量程计量模拟前端(AFE)的基础上,集成了ARM Cortex-M0微处理器、LCD驱动和带温度补偿功能的高精度实时时钟(RTC),可以减少$单相电表的元器件数量,简化设计和生产流程,降低材料成本和库存管理难度。
90E46具有下列特性:
32位 ARM Cortex M0 内核,6KB RAM, 128KB Flash;
4路独立UART,UART0支持红外调制(IR),UART3支持硬件ISO7816协议;
集成硬件看门狗(WDT),支持中断功能;
2路25位通用PWM;
1路14位低功耗PWM,用于红外唤醒;
2路16位定时器
最多45个GPIOs,23个支持5V输入;
4个外部中断输入,可用于系统唤醒;
2路12位GPADC,集成高精度参考电压源和阈值比较电路;
1路低功耗$电压比较器,用于芯片掉电检测;
芯片支持运行模式、睡眠模式、待机模式和LCD显示模式;
内置PLL电路,外部只需32.768kHz晶体即可工作;
符合IEC和ANSIC标准要求;可用于单相1级、2级有功电能表和2级无功电能表;
在计量动态范围5000:1内有功电能准确度优于 0.1%,无功电能准确度优于0.2%;
片内参考电压源的温度系数典型值 6 ppm/ ℃;
电参数测量:电压/电流有效值、平均功率、频率、功率因数和相角的引用误差低于0.5%;
在整个动态范围内只需要单点校准,可用于50Hz 和 60Hz电网;
片内$温度传感器在-40 ℃~ +85 ℃范围内准确度±1 ℃;
片内硬件RTC带频率补偿功能。补偿范围:-3900ppm 到3900ppm,补偿精度±0.12ppm;
内置4Com×34Seg / 6Com×32Seg / 8Com×30Seg LCD驱动器,含偏置电压生成电路;
工作温度:-40℃~+85℃;
TQFP100 绿色封装。
90E46的功能框图如图1所示:
图1 90E46功能框图
硬件设计
90E46采用了高集成度的芯片设计技术,外部只需要少量器件就可以实现最小系统功能。整个MCU小系统如图2所示:
图2 90E46 小系统电路
宽量程电能表的校准和软件设计
测量/计量校准
采用90E46设计的$单相电能表,只需要在Ib电流点进行单点校准,即可保证5000:1动态范围内的计量准确度。对于1(100)A的电能表,可以在5A(或10A)电流下进行校表,同样可以满足整个电流范围内的计量准确度。整个校表流程如图3所示:
[page]
图3 90E46 校表流程
温度传感器
90E46内部集成的温度传感器准确度为±1℃,基于该温度传感器,可对RTC和参考电压进行温度补偿,达到更好的计量性能和RTC准确度。
芯片内部有专门的温度传感器ADC采样模块,该模块可以设置成周期性自动执行的方式,并且可以设定ADC采样数据的上下限阀值和唤醒。这个功能使得低功耗状态下的RTC温度补偿特别方便。MCU在进入低功耗状态前,只要先设置好温度自动采样周期(如20s)和上下限阀值。进入低功耗状态后,芯片会自动进行周期性温度采样,当ADC采样值超出上下阀值的范围时,会唤醒MCU,由MCU对RTC进行温度补偿修正。
实时时钟(RTC)外置晶振的温度补偿
系统外接单一32768Hz晶体作为系统时钟源,这也作为RTC的时钟源。石英$晶体振荡器的振荡频率对外部温度非常敏感,环境温度的上升或者下降都会引起中心频率的漂移,从而造成RTC计时的偏差。为了弥补这种误差,系统需要实时监测晶体周围环境温度,然后根据晶体的频率温度特性对32768Hz晶体的频率进行动态的补偿,以确保补偿后的频率在整个工作温度范围内稳定不变。
实时时钟(RTC)的整个补偿过程包括:晶体周围环境温度的采集,和历史温度的比较,晶体误差的计算,补偿等几个过程。为了最大限度降低系统功耗,上述 RTC温度补偿过程中的大部分环节都可以通过90E46内部相应的硬件电路来实现,不需要CPU的干预。完整的RTC温度补偿流程如图4所示:
图4 RTC温度补偿流程
小结
90E46将计量模拟前端(AFE)、微处理器(MCU)、实时时钟(RTC)和LCD驱动集成到单一芯片中,是真正意义上的单相智能电能表SoC芯片。采用90E46设计的电能表,其外围器件和电路都变得简单明了。采用90E46可实现1(100)A的单相电能表设计,从而让电能表生产厂家采用同一设计涵盖不同量程的电能表需求,减少产品开发投入,降低元器件和库存管理成本。
附录:产品参数与测试数据
宽量程电能表产品参数
电能表的基本参数为:
参比电压:AC 220V
电流规格:1(100) A
参比频率:50Hz
仪表常数:3200imp/kWh, 3200imp/kvarh
计量动态范围测试结果
经过测试,在20mA~100A的电流范围内,整表的有功电能计量误差优于±0.2%,无功电能计量误差优于±0.4%,可完全满足1级表的设计要求。图5和图6分别是在PF是1.0和0.5L的情况下有功电能的计量误差:
图5 PF=1.0时有功电能计量误差测试数据
图6 PF=0.5L时有功电能计量误差测试数据
实时时钟测试结果
经测试,智能电表的实时时钟在常温下的准确度小于±5ppm,误差小于±0.5秒/天。在-40℃~85℃的温度范围内,时钟误差小于±10ppm。图7是在 -40℃~85℃温度范围内的实时时钟准确度测试结果:
图7 RTC 1Hz 输出在-40℃~85℃温度范围内测试结果
本文由大比特收集整理(www.big-bit.com)
暂无评论