汽车自动启停系统对电源的影响及安森美半导体非同步升压转换器方案
所谓自动启停功能,就是汽车因为堵车或等红灯而停下来时,这些创新的系统自动关闭发动机(熄火);而当驾驶人的脚从刹车踏板移向油门踏板时,就自动重新启动发动机(点火)。这就帮助降低市区驾车及停停走走式交通繁忙期时不必要的油耗,降低排放。
自动启停系统对汽车电源系统的影响及常见电源方案
但这样的创新系统也为汽车电子设计带来一些独特挑战。因为当发动机重新启动时,电池电压可能骤降至6.0 V甚至更低。传统汽车电源架构中,典型电子模块包含反极性二极管,用于在汽车跳接启动(jump started)而跳接线缆反向的事件中保护电子电路。保护电路本身产生压降,使下游电路电压仅为5.5 V或更低。由于许多模块仍要求5 V供电,过低的压差使降压电源没有足够余量来正常工作。因此,传统的汽车电源架构不适用于自动启停系统。
图1:传统汽车电源架构及其问题所在
要为自动启停系统选择适当的电源架构,常见的方案有三种(见图2)。一种方案是采用低压降(LDO)线性稳压器,或是低压降开关电源。另一种方案是采用升降压电源作为初级电源。第三种方案是在初级高压降压电源之前,采用前置升压电源。
图2:自动启停系统的常见电源方案(方案1是低压降电源,不只是LDO)
安森美半导体用于启停系统的改进型前置升压电源方案——NCV8876
安森美半导体应用于汽车自动启停系统的非同步升压控制器NCV8876,主要用于在汽车自动启停时为后续电路提供足够的工作电压。它是一种改进型的前置升压电源方案。
NCV8876驱动外部N沟道MOSFET,使用内部斜坡补偿的峰值电流模式控制,集成了内部稳压器,为门极驱动器提供电荷。NCV8876采用2 V至45 V输入电压工作,能够在冷启动及45 V负载突降情况下工作。NCV8876在休眠模式下的静态电流典型值仅为11 μA,适应汽车应用的低静态电流要求。它在宽温度范围下提供±2%的输出电压精度。NCV8876采用SOIC8微型封装,工作温度范围-40℃至150℃,能够适应汽车应用的严格要求。
图3:安森美半导体的改进型前置升压电源方案NCV8876的典型应用电路
如图3所示,NCV8876具有状态(STATUS)监测功能,能为微控制器提供工作状态信息。当工作状态为低电平时,NCV887工作;高电平时,NCV8876休眠。这器件可以透过外部电阻RDSC设定频率。它还可内部设定限流值、最大占空比等多项参数。NCV8876集成了多种保护功能,如逐周期限流保护、断续模式过流保护及过热关闭等。其它特性包括:峰值电流检测、最小COMP电压钳位可提高切换时的响应速度等。总的来看,NCV8876应用电路简单,成本低,非常适合汽车启停系统应用。
NCV8876工作原理
NCV8876改进型前置升压电源方案的原理是:电池电压正常时,NCV8876进入休眠模式,仅消耗极低的静态电流(典型值< 11 μA);而当电池电压降至设定电压时,NCV8876自动唤醒,开始升压工作。
具体而言,当汽车电池供电电压下降到低于7.3 V(可工厂预设)时,NCV8876自动启用;而当电池电压降至低于6.8V时,NCV8876启用升压工作。因此,NCV8876可以保障后续电路有足够的余量来恰当地进行降压工作,供下游系统使用。
图4:安森美半导体NCV8876非同步升压控制器工作原理详解
安森美半导体基于NCV8876的演示电路板测试显示,在输入电压最低2.6 V条件下,输出电压为6.8 V,输出电流为3.6 A,能够使后续降压转换器恰当工作,并为下游系统供电。
图5:NCV8876演示电路板及实测波形
总结:
汽车自动启停系统帮助降低油耗及废气排放,但此创新功能也带来独特的工程设计挑战。本文介绍了安森美半导体的最新前置升压电源方案NCV8876的功能特点及工作原理,帮助设计人员应用这非同步升压控制器,为创新的汽车自动启停系统开发简单、低成本的电源方案。
本文由大比特资讯收集整理(www.big-bit.com)
暂无评论