基于DSP的以太网通信接口设计
1 概述
TM1300是Philips公司推出的新一代高性能多媒体数字信号处理器芯片。基于TM1300的DSP应用系统适合于实时声音、图像处理,可广泛应用于会议电视、可视电话、数字电视等应用场合。它不仅具有强大的处理能力,同时还具有非常友好的音频和视频以及SSI和PCI等I/O接口,因此可以根据应用的需要灵活地构造各种视频通信系统。鉴于目前计算机网络的普及和网上视频业务的发展,很有必要为TM1300视频编码系统开发一个以太网接口以拓宽其应用范围。开发以太网接口的一种合理思路是利用TM1300集成的PCI接口来驱动专用的以太网接口芯片。由于目前多数以太网接口芯片(如Real- tek8029,Realtek8139等)都采用PCI接口,因此,可以用PCI总线将数据从TM1300传输到这些专用的以太网接口芯片后,再由它们发送数据,而且TM1300可以在嵌入式操作系统pSOS中运行,同时由于系统pSOS带有TCP/IP协议栈因此可以方便地完成编码码流的TCP/IP封装。 根据以上思路笔者在进行了前期测试的基础上进行了电路板的设计并顺利完成了调试。目前这个以太网接口已经基本开发成功。本文将对这个设计的技术要点从硬件和软件两个方面进行详细介绍。
2 TM1300及PCI总线接口
该系统的硬件结构框图如图1所示。本系统硬件设计的重点是PCI总线接口。PCI总线根据数据位的宽度有32位和64位之分,64位的数据线与32位是兼容的。PC机中常见的是32位PCI总线,它的有用引脚总数是110个,可以分成3组。第一组是基本功能信号线,包括32位共享数据地址线AD〔00..31〕、接口控制线、仲裁线、时钟线、系统复位线、中断线;第二组是附加功能信号线,包括错误报告线、cache功能支持线、JTAG边界扫描线;第三组是电源线,包括设备耗电量标识线、3.3V电源线(12根)、5V电源线(13根)、地线(22根)。 因为Realtek8029不具备PCI的附加功能信号线所支持的cache功能和JTAG边界扫描功能,同时虽然它具有奇偶校验错误报告功能引脚,但该脚可以悬空不用。所以,设计时只需考虑第一组功能信号线的连接即可。 PCI接口的设计有以下几个要点: (1)PCI总线的仲裁 这里先说明两个概念。首先,PCI总线是多设备共享的,由于PC机里可以有多个PCI设备,所以需要使用仲裁器;其次,PCI设备有主设备和从设备之分,主设备可以发起PCI数据的传送从设备只能被动地响应主设备的操作以对读操作和写操作做出响应。PCI的仲裁引脚是REQ和GNT,分别为请求线和授权线,而且只有PCI主设备有这两个引脚。一般情况下,REQ通常和GNT成对地连到仲裁器,而设备与设备的REQ和GNT通常是互不相连的。 PCI总线的仲裁过程是这样的:PCI主设备把REQ电平拉低以表示向仲裁器请求占用总线。经仲裁获准后,仲裁器把这个设备的GNT电平拉低以表示请求获准,此后该设备便可以使用总线了。当它不再使用总线时,应使REQ信号变为高电平仲裁器就不再给它分配总线资源。在本系统中,TM1300是PCI主设备,而Realtek8029是PCI从设备。由于它们不存在共享总线的问题,所以不需要仲裁器,而只是简单地把REQ和GNT短接即可,这就相当于TM1300自己给自己授权。
[page]
(2)PCI_IDSEL信号线在设备的PCI配置读写中的作用 PCI有一种特殊的读写周期,称为配置读写。这是因为在系统引导时,如果没有给设备配置I/O或内存地址,软件就只能通过配置来读写访问设备。配置读写有两种,分别称为0型和1型具体采用哪一种取决于总线的硬件连接。配置读写操作不经过PCI桥时,使用0型,当需要经过PCI桥时,则要用1型,0型读写的地址直接就是总线上的地址,1型读写的地址则要经过PCI桥的译码才能成为最终的总线地址。本设计中,TM1300和Realtek8029是用PCI总线直连的,所以使用0型配置读写。 AD〔00..31〕是PCI总线的共享地址和数据线,每一次PCI传送都分为地址周期和数据周期。在地址周期,采用0型读写时,AD〔00..31〕的内容如下,AD〔00〕和AD〔01〕总为“00”,因为配置读写是以双字为单位的,AD〔02〕~AD〔07〕是要读写的PCI配置空间的寄存器号AD〔08〕~AD〔10〕是设备的功能号在一块PCI卡上有多个功能设备时,为了进一步区分不同的设备就要用到这几位,由于Realtek8029是单功能设备,故这几位全为0,AD〔11〕~AD〔31〕是设备选择位,其中必须有且仅有一位为“1”,如图2所示,这在物理上表现为总线的AD〔11〕~AD〔31〕中有一根为高电平如果输出高电平的这根线与某块PCI卡的PCI IDSEL引脚相连,这块卡就会被激活,这样,在紧接着的数据周期中,它就会将其PCI配置空间相应寄存器中的内容放到总线上以供读取。 (3) PCI_
3 软件设计
该接口设计的软件结构框图如图3所示。其中TM1300运行于pSOS,它是一个简单的实时多任务嵌入式操作系统,带有pNA+网络组件,其pNA+相当于TCP/IP协议栈的扩展,它向上可提供应用程序编程的socket接口,向下可定义一个与网络接口层交互的接口,其中包括8个函数,分别是:ni_init(接口芯片初始化)、ni_broad-cast(发送广播分组)、ni_send(发送普通分组)、ni_getpkb(申请发送缓冲区)、ni_retpkb(归还接收缓冲区)、ni_ioctl(I/O控制操作)、ni_pool(统计量查询)、Announce(网络接口驱动调用它把接收到的数据包提交给pSOS)。其中网络接口层在本应用中就是Realtek8029的驱动程序,它通过硬件抽象层来驱动Realtek8029(硬件抽象层是PCI总线的配置读写和I/O读写指令集的总称)。 软件执行的流程大致是:系统首先启动pSOS,并由它加载网络接口驱动程序,然后调用驱动程序的ni_init函数,同时初始化Realtek8029的PCI配置空间并设置Realtek8029的工作参数,之后启动用户任务。在这里,用户任务为H.263编码进程。它对VI口读入的源图像进行压缩编码后,将调用socket的接口函数
[page]
sendto(sendto是UDP套接口专用的发送函数),然后把码流发送给pSOS由pSOS根据UDP协议进行封装后,再调用ni_send函数,并由ni_send完成数据包从系统主内存到Realtek8029片上RAM的拷贝,然后启动Realtek8029发送数据。在接收情况下,Realtek8029收到一个完整的数据包后会用中断通知CPU,然后由CPU执行中断服务程序。当中断服务程序将数据包从Realtek8029片上RAM中拷贝到系统的主内存后,系统将调用Announce函数并把数据块的指针、数据长度和其它信息提交pSOS,最后由pSOS将数据包沿协议栈一层层上传并作出相应的处理。 软件的设计和pSOS操作系统的关系比较密切,限于篇幅,本文不对pSOS作详细介绍,。本文接下来重点介绍PCI配置空间的配置过程,这部分对于类似的设计有较普遍的参考意义。PCI配置空间有64个字节,PCI片内的这些寄存器存储了该芯片的厂商号、设备号、设备类型等重要代码,还包括命令寄存器、基地址寄存器等控制其总线行为的寄存器,它们必须在设备初始化时正确配置,否则设备不能工作。 对Realtek8029 PCI空间的配置需要三个步骤: 首先是扫描总线,这一步的目的是找到Real-tek8029的配置地址,直观地讲,就是找到它的PCI_IDSEL引脚和哪根AD线相连,因为后续的配置写要根据这个地址来寻址。扫描总线时,要对AD〔11〕到AD〔31〕每根线进行一次扫描,如果哪根AD线连接了一个PCI设备的PCI IDSEL引脚,那么用配置读函数读取PCI配置空间的0号寄存器时,应该返回该设备的设备和厂商代码,如果这根线实际未连接设备,则返回值是0。已知Realtek8029的设备和厂商代码是“0x802910ec”,如果返回值与之相同,说明找到了Realtek8029,这时要记下这根AD线的序号。例如,在硬件上把Realtek8029的PCI IDSEL和AD〔20〕相连,则扫描到的序号就应该是“20”。 其次,用配置写函数配置I/O读写使能,即在command寄存器中写入“0x1”。 最后,用配置写函数配置I/O地址,也就是在I/OBaseAdddress寄存器写入分配给该设备的I/O地址(例如“0xe400”)。具体程序流程图如图4所示。
4 调试结果
根据以上设计,笔者在原TM1300视频编码硬件系统的基础上加入了PCI接口,并编写了pSOS下Realtek8029的驱动程序。然后,在这个硬件平台上对Realtek8029的驱动部分进行了数据传送测试。 笔者首先用一个单独的UDP发送任务进行发送速率测试。这个任务主要是高速地向网络上的一台PC发送数据包,数据包的大小是变长的。PC接收并对丢包数进行统计的结果如表1所列。实验表明,在用网线直连的各种测试速率情况下都没有出错,而当接入局域网后,在发送速率为4.5Mbps时有突发的少量错误。由于UDP是不可靠的传输方式,所以这种错误是正常的。测试中,UDP发送的最高速率可以达到5Mbps左右,它与硬件的最高速率(10Mbps)相比还有一定差距,主要原因是数据从系统主内存到Realtek8029片上RAM的拷贝过程目前尚未采用DMA方式,这是需要改进的地方。 表1 丢包数统计表(单位:丢包个数/分钟) 连接方式发 送 速 率 800kbps 1.8Mbps 4.5Mbps 网络直连 0 0 0 接入局域网 0 0 2.5 接下来笔者进行了编码和传送的联合测试。编码任务执行H.263数据压缩后,把码流从以太网接口发出,然后在网络上的另一台PC上接收这个码流,并进行解码播放。通过调整编码器的量化步长可以控制编码的输出码率。在实验环境下发现在量化步长大于等于5、码率在700kbps以下时,基本没有丢包现象,解码得到的图像比较稳定,而当量化步长进一步减小,码率接近1Mbps时,就会出现丢包现象,解码的图像会出现彩色方块。出现这种现象是因为H.263编码器对CPU资源的消耗很大,而且数据在主内存和Realtek8029片上RAM之间的复制采用I/O读写方式也需要一定的CPU资源。这样,当量化步长小于5时,处理的复杂度超过了CPU的能力从而产生了一定的误码。解决的途径一方面是改进数据的传送方式(采用DMA),另一方面是需要对编码任务进行优化。
5 小结
本文介绍了PCI总线接口的设计以及PCI空间初始化的步骤,同时对测试结果进行了较详细的分析,提出了以后改进的方向。
本文由大比特资讯收集整理(www.big-bit.com)
暂无评论