多传感器集成技术助力智能化安防建设
传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求,它是实现自动检测和自动控制的首要环节。
传感技术同计算机技术与通信技术一起被称为信息技术的三大支柱。从仿生学观点,如果把计算机看成处理和识别信息的“大脑”,把通信系统看成传递信息的“神经系统”的话,那么传感器就是“感觉器官”。
随着传感器技术、数据处理技术、计算机技术、网络通讯技术、人工智能技术和并行计算的软硬件技术等相关技术的发展,多传感器信息融合技术已受到了广泛关注。随着科学技术的进步,多传感器信息融合至今已形成和发展成为一门信息综合处理的专门技术,并很快推广应用到工业机器人、智能检测、自动控制、交通管理和医疗诊断等多种领域。我国从20世纪90年代也开始了多传感器信息融合技术的研究和开发工作,并在工程上开展了多传感器识别、定位等同类信息融合的应用系统的开发,现在多传感器信息融合技术越来越受到人们的普遍关注。
一、多传感器融合四个特点
多传感器信息融合技术的基本原理就像人的大脑综合处理信息的过程一样,将各种传感器进行多层次、多空间的信息互补和优化组合处理,最终产生对观测环境的一致性解释。在这个过程中要充分地利用多源数据进行合理支配与使用,而信息融合的最终目标则是基于各传感器获得的分离观测信息,通过对信息多级别、多方面组合导出更多有用信息。这不仅是利用了多个传感器相互协同操作的优势,而且也综合处理了其它信息源的数据来提高整个传感器系统的智能化。
多传感器融合系统特征,具有四个显著的特点:
1.信息的冗余性
对于环境的某个特征,可以通过多个传感器(或者单个传感器的多个不同时刻)得到它的多份信息,这些信息是冗余的,并且具有不同的可靠性,通过融合处理,可以从中提取出更加准确和可靠的信息。此外,信息的冗余性可以提高系统的稳定性,从而能够避免因单个传感器失效而对整个系统所造成的影响。
2.信息的互补性
不同种类的传感器可以为系统提供不同性质的信息,这些信息所描述的对象是不同的环境特征,它们彼此之间具有互补性。如果定义一个由所有特征构成的坐标空间,那么每个传感器所提供的信息只属于整个空间的一个子空间,和其他传感器形成的空间相互独立。
3.信息处理的及时性
各传感器的处理过程相互独立,整个处理过程可以采用并行导热处理机制,从而使系统具有更快的处理速度,提供更加及时的处理结果。
4.信息处理的低成本性
多个传感器可以花费更少的代价来得到相当于单传感器所能得到的信息量。另一方面,如果不将单个传感器所提供的信息用来实现其他功能,单个传感器的成本和多传感器的成本之和是相当的。
[page]
二、多传感信息融合架构形式
信息融合作为对多传感器信息的综合处理过程,具有本质的复杂性。在信息融合处理过程中,根据对原始数据处理方法的不同,信息融合系统的体系结构主要有三种:集中式、分布式和混合式。
集中式
集中式将各传感器获得的原始数据直接送至中央处理器进行融合处理,可以实现实时融合,其数据处理的精度高,算法灵活,缺点是对处理器要求高,可靠性较低,数据量大,故难于实现。
分布式
每个传感器对获得的原始数据先进行局部处理,包括对原始数据的预处理、分类及提取特征信息,并通过各自的决策准则分别作出决策,然后将结果送入融合中心进行融合以获得最终的决策。分布式对通信带宽需求低、计算速度快、可靠性和延续性好,但跟踪精度没有集中式高。
混合式
大多情况是把上述二者进行不同的组合,形成一种混合式结构。它保留了上述两类系统的优点,但在通信和计算上要付出较昂贵的代价。但是,此类系统也有上述两类系统难以比拟的优势,在实际场合往往采用此类结构。
最近,多功能集成化传感器研究受到国内外的广泛关注,化学分析、生物保护等方面的集成传感器相继问世。随着MEMS技术的发展,人们可以在同一材料上制作几种敏感元器件,制成能够检测多个参量的集成化多功能传感器。多功能传感器主要有几种不同的工作原理及结构形式,其中,由于集成度高、体积小,各个敏感元器件的工作氛围相同,容易实现补偿和校正等优势,将几种不同的敏感元器件制作在同一个硅片,制成集成化多功能传感器将是多功能传感器发展的一个方向。
此外,引进中间件技术也是实现多传感器集成的一个常见举措。由于不同类型的传感器所提供的感知数据结构不一致,为了实现接入不同类型、不同厂家的传感器,系统要解决异构感知数据的接入和处理问题,以及各层之间交互协议的转换与解析问题,而中间件是实现底层硬件设备与应用系统之间数据传输、过滤、数据转换以及交互协议的转化与解析的一种中间程序。
本文由大比特资讯收集整理(www.big-bit.com)
暂无评论