如何解决大屏幕液晶显示器背光应用中的电流分配难题

2010-12-20 14:04:34 来源:半导体器件应用网
1 前言
因为冷阴极荧光灯(CCFL)成本非常低,通常大屏幕液晶显示器(LCD)使用 CCFL 作为背光源产生均匀的白光。不过将发光二极管(LED)用作背光灯正在引起主要制造商们的注意。LED 在尺寸、能量效率、光谱纯度、机械强度、可靠性和消除汞等有害物质方面都胜过 CCFL。
白光可以来自单个白色 LED,也可以由三个独立的色谱与 LCD 像素色彩滤波器非常匹配的 R-G-B LED 产生。该技术可以大幅提高发光效率和色彩范围,从而使显示效果更加清晰、鲜艳。目前采用 CCFL 背光灯的 LCD 只能产生 70-80% 的 NTSC 制颜色,而采用 LED 背光灯的新型显示器可以产生 NTSC 制式中定义的所有颜色,甚至还能产生 NTSC 定义范围之外的颜色。利用 LED 超快的开关时间,背光强度可以被调节,从而进一步增强图像对比度,减少快速运动图像产生的拖尾现象。
要想在小屏幕 LCD 监视器(一般是 19 英寸)中替换 CCFL,可以在外壳四周部署三色 LED 器件来代替 CCFL 管。通常只是光源被更换(从 CCFL 到 LED 串),外壳、光导和光膜可以保持不变。而对较大尺寸的 LCD(20 英寸以上)而言,由于要求较高的光通量,可以在 LCD 面板背后直接部署 LED 矩阵,并使必要的扩散层和光膜夹在这些 LED 矩阵之间。LED 矩阵大小随面板尺寸而变,一般为几百个 LED。为了确保均匀的照明,需要在标准的光膜上使用专门的衍射散射层。随着技术的进步,半导体芯片的输出亮度会越来越高,因此串联式或矩阵式 LED 中的 LED 数量可以变少,从而进一步降低材料和系统成本。
2 LED 背光灯面对诸多挑战
当然设计师还必须面对诸多的挑战,比如在温度变化和 LED 逐渐老化的情况下保持光谱的一致性。不过这种技术是很有前途的。一些主要的笔记本电脑制造商正计划推出更多采用 LED 背光灯的产品。大屏幕电视机制造商也已经在这方面投入大量资源,因此 LED 背光灯有望在消费类市场中越来越流行。
最近在背光灯面板技术方面有所突破,已经可以在 LCD 的背光面板中使用最新推出的高亮度白色 LED。这些新的 LED 需要封装尺寸非常小、功率达 200W 的 4V 直流电源。这种设计采用的是一家非上市公司发明的专利技术,这家公司致力于开发和销售创新的高动态范围(HDR)图像技术。这种技术可以用来制造更高亮度的显示器。通过使用增强型视频处理算法调整 LED 的亮度,所发出的亮度可以比传统的 LCD 高 10 倍。背光灯中的每个 LED 都是独立可寻址的,因此光强度可以逐帧甚至逐个微区域地动态改变。这种技术可以实现更高动态范围的显示器,与以前技术相比可以使黑的地方更黑,亮的地方更亮,从而显著提高图像的清晰度。该技术已经在一些高端成像设备使用的大屏幕显示器(37 和 46 英寸高清晰显示器)中得到应用。
这些新的 LED 需要封装尺寸非常小、功率可达 200W 的 4V 直流电源。以前的产品都是使用一个 500A 的 5.5V 电源,在显示器中处理这么大的电流分配非常困难。中转总线变换器(BCM)是一种 V·I 晶片模块,设计用于大功率 LED 应用以解决电流分配问题。BCM 采用了 Vicor 公司获得专利的正弦幅度转换器(SAC)拓扑结构,具有先进的功率密度、效率和低噪声性能。BCM 的外形尺寸只有 1.1 平方英寸,典型重量为 15 克,可以提供一个隔离和降压电压供非隔离负载点转换器(niPOL)使用。由于它具有快速响应和低的输出噪声,负载端常用的寿命有限的铝电解或钽电容可以被减少或取消,从而有效节省电路板面积、材料和总体系统成本。
现在系统可以用更低的电流分配 48V 电压到任意位置,然后再局部降压至大电流的 4V。每块大板上有 4 块小板组成 1 个系统,因此每个系统中总共有 16 个 BCM。结果是每块板运行于 200A、4V 的电源。相反,如果系统由一个大电源支持,它需要一个 800A 的电源,当然这样的电源是很危险的。这就是为何 20A 的 48V 电压被分配到各个板的原因,这种电源具有更高的可管理性和相当好的熔断性。
BCM 因为以下几大因素而成为恰当的解决方案。首先是 BCM 的尺寸和效率,它不需要使用任何专门的散热器。其次,它工作在 48V 的安全电压(SELV)。BCM 还能提供针对不同应用优化了的不同标准的输出电压。通常上述应用中的系统输入电压需要调整到 4.1V 至 4.2V 的工作电压。由于 BCM 是一种转换器而不是一种稳压器,设计师可以使用高达 48V 的输入电压来获得他们所需的指定输出电压。
其它背光方案要求用恒定电流来驱动串连着的大功率 LED 阵列。一般来说,恒定电流是用来确保可预测的发光亮度和色度值。V·I 晶片非隔离预稳压模块(PRM)稳压器和倍增电流电压转换模块(VTM)电压变换器虽然主要设计用于利用自适应环路稳压方法提供稳定的电压,但也可通過簡單的電路修改而達至恒定的输出电流。
与传统方法相比,使用 PRM 和 VTM 提供恒定电流具有许多优点。在系统中使用 VTM 可以倍增负载点的电流,VTM 的输出电流正比于它的输入电流(如公式 1所示)。
                                        (1)
其中 K 是 VTM 的 K 系数,或简单地将其称之为降压比。
因此在受控的电流应用中,可以通过检测和调节 VTM 的输入电流来控制其输出电流。检测更低的电流需要更小的传感器,从而消耗更低的功率,提高总体效率。另外,V·I 晶片本身也具有很高的效率和功率密度,使得整个 LED 系统体积小、温度低,并能使每瓦功耗得到的输出流明数最大。
3 PRM+VTM 驱动方案
大多数已知的 LED 类型可以用单个 PRM+VTM 对驱动。PRM 用内部电压环路预先进行配置,以便将 PRM 的输出电压调整到一个设定值。PRM 的内部工作原理应该非常好理解,因为外部恒流电路是设计与内部电压控制环路一起工作的,可以通过改变 PRM 电压参考值来调节 VTM 的输出电流。
PRM 内部电压控制环路的简化框图如图 1 所示。内部参考通过一个 10k 的电阻和 0.22uF 的电容连接到 PRM 的 SC 端口,用于实现软启动功能。SC 电压可以通过增加外部电阻或施加外部电压进行调整。SC 端口处加的电压不应超过 6Vdc。
SC 电压经缓冲后通过电阻分压器反馈给误差放大器,其中电阻分压器被表示为 0.961 的增益块。R68 形成了电压检测电阻分压器的上半部分。这个电阻对每个 PRM 来说都是固定的。分压器的下半部分是通过在 OS 引脚和 SG(ROS)之间增加一个电阻形成的。公式 2 将 PRM 输出定义为 VSC 和 ROS 的函数。从公式 2 可以看出,对于给定的 ROS 电阻,调整 SC 电压可以确定 PRM 输出电压。这就是外部电流控制电路控制输出所采用的方法。
      (2)
其中:VSC 是 PRM 的 SC 引脚处的电压,ROS 是 OS 与 PRM 的 SG 之间的电阻,R68 是 PRM 内部电阻。
推荐的电流控制电路如图 2 所示。由于 VTM 是一个电流乘法器,VTM 的输出电流可以由它的输入电流进行调节。这种方法的优点是可以在 VTM 电流乘法电路之前(在更高的电压点)检测电流,从而减少外部分流电路的 I2R 功耗。另外,控制电路保持在主电路(PRM)侧,因此无需隔离反馈信号。
上述电路由电压参考、分流电阻、差分放大器和误差放大器组成。低端检测电路是在 PRM 输出端用配置为差分放大器的一个运放实现的。分流电阻(R1)上的电压经检测并被放大电阻 R2 到 R5 确定的增益倍数。参考电压使用精确可调的分流参考产生,并连接到误差放大器的同相端子。这是误差放大器用以与差分放大器输出(VSENSE)比较的电压。误差放大器的输出(VEAO)经过电阻 R7 和 R8 连接到 SC,从而实现 PRM 输出设置点的调整。误差放大器将调整 PRM 输出电压,直到 VSENSE 等于参考电压 VREF。这将迫使 VTM 输入电流以及 VTM 输出电流成为由 VREF 确定的常数。
带一个简单的外部电流检测电路的 PRM 可以用作恒流源。VTM 将分比式总线电压变换为从 0.8 到 55V 的适合不同颜色 LED 的电压(例如,6V 用于蓝色 LED、14V 用于琥珀色,24V 用于绿色)
分比式电源架构(FPA)的灵活性允许相同的 PRM 驱动用于不同颜色 LED 的不同 VTM(不同的 K 因子),同时由于只使用另外一个 PRM 模型,在不同的输入源电压下相同的 VTM 可以保持不变。另外,VTM 可以放置在大电流的负载点旁以尽量减少电压下降和功耗。
在上游增加一个带高压 BCM 总线转换器(380V)的 PFC 前端后,就能向下游中的 PRM/VTM 或 BCM 提供一条 48V 总线,用于驱动针对不同颜色(低功率 LED)的 LED 驱动器。这将成为一个 PFC 交流到直流电源,可向 0.8V 到 55V 的大功率 LED 阵列供电。
48V 到 4V BCM 是一种高效率(>94%)、窄输入范围的正弦幅度转换器,采用了新型的直流-直流转换器拓扑结构,可以用来给非隔离式 POL 转换器供电,或用作一个独立源。BCM 非常小,面积只有 1.1in2 每平方英寸功率达 210W,而且重量轻,只有 0.5 盎司,但功率密度可达876W/in3。
4 结语
PRM 是一个非常高效率的非隔离式稳压器,可以接受宽范围的输入电压,并通过升压或降压技术提供稳定但可调的输出电压或“分比式总线”。PRM 可以单独用作非隔离式稳压器,也可以与 VTM 一起实现完整的、具有较高效率和功率密度的隔离式直流-直流解决方案。VTM 可以提供负载点、固定比例的电压转换功能,并具有特别快速的瞬态响应和 2250Vdc 的隔离度。
本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,否则将严格追究法律责任;
Big-Bit 商务网

请使用微信扫码登陆

x
凌鸥学园天地 广告