硬件电路是电路系统的重要组成部分,硬件电路设计是否合理直接影响电路系统的性能。硬件电路设计的一般分为设计需求分析、原理图设计、PCB设计、工艺文件处理等几个阶段,设计过程中的每一个细节都可能成为导致设计成功与失败的关键。
有关“硬件电路设计”的最新话题,搜索104 次
硬件电路设计上采用DSP芯片和外围电路构成速度捕获电路,电机驱动控制器采用微控制芯片和外围电路构成了电流采样、过流保护、压力调节等电路,利用CPLD实现无刷直流电机的转子位置信号的逻辑换相。赛车刹车控制器是由防滑控制器和电机驱动控制器组成。
航标终端是航标遥测遥控系统的重要组成部分,目前在国内技术尚不成熟,尤其是在内河航道上的应用,有诸多亟待改进的地方。文章主要围绕终端的设计思路、部分模块硬件电路设计、航标遥测、嵌入式软件设计等方面本文提出了一种基于ARM的航标终端设计方案,为了使终端更加灵活高效的工作,本方案采用了双CPU
AD73360特别适合于电能计量使用,同时其针对DSP的简易接口设计,使得硬件电路设计更加简单。配合FPGA较强的处理能力,使得整个系统只需要一片FPGA便可以完成全部的控制和电能计量任务,不需要再使用额外的芯片。同时也使得系统成本下降,开发周期大大缩短。
本论文首先分析了锂电池的主要特点,并在此基础上提出了基于单片机控制的锂电池智能充电器设计方案。此设计实现的是单节锂电池充电,因此选用了AT89C52单片机配合MAX1898充电管理芯片及适当的配套元件,进行硬件电路设计,使所设计的充电器具有智能控制的特点,能根据不同锂电池的电参数自动确定相应的充电控制规律,自动检测、充电、断电、报警等。
基于数字信号处理器(DSP)TMS320VC5416和复杂可编程逻辑器件(CPLD)的嵌入式车牌识别系统的硬件设计,利用视频处理芯片SAA7111作为视频A/D,在CPLD的控制下将采集到的图像数据写入帧存储器中,DSP对图像数据进行实时分析处理。采用“乒乓”存储结构,实现了图像数据的采集和处理的并行运行。识别结果通过串口传到上位机或者保存在E2PROM中,实现了车牌识别系统脱机、联机工作,在实时
本文在硬件电路设计上采用DSP 芯片和外围电路构成速度捕获电路,电机驱动控制器采用微控制芯片和外围电路构成了电流采样、过流保护、压力调节等电路,利用CPLD实现无刷直流电机的转子位置信号的逻辑换相。在软件设计上,软件以C语言和汇编语言相结合的方法实现了系统的控制。最后提出了模糊控制调节PID参数的控制策略。
DDSF系列电能表的硬件电路设计由电源电路设计、计量电路设计、通讯电路设计、MCU及其它部分电路设计四大部分组成。其中核心部分是计量电路的设计,它是电能表计量准确性的关键部分,是电能表计量功能的体现,但是其他部分也是缺一不可的,特别是单片机控制器,它是电能表系统的灵魂,实现系统中各个部件协调控制,人机交互,多费率控制等等重要的功能。
本文设计的稳压电源采用性能稳定常用的PWM 芯片SG3525 来进行反馈调整稳压,并通过51 单片机来设定输出电压,功放电路采用MOS 管搭建的双端推挽方式,提高了电源效率。系统测试和运行结果表明,该稳压电源使控制更加智能化,能够长期高效,稳定的工作,更够满足农业机械以及照明设备电路的持续工作需要,同时避免了大量的硬件电路设计,降低了制造成本,在农业生产机械和照明设备上具有比较广阔的应用和发展前景
介绍了ZigBee无线传感器网络,将ZigBee技术应用到智能家居系统中。提出了一种以ZigBee技术为基础的智能家居系统设计方案。阐述了无线传感器网络的总体构成,以CC2430无线芯片为棱心,选取了合适的ZigBee模块进行了硬件电路设计。研究并分析了ZigBee技术。设计并实现了串口收发程序,传感器程序,以及节点间的无线通信程序,并根据ZigBee协议,使节点组成树状网络,最终实现系统的监测与