大比特资讯旗下:
智能照明 智能家电 AI+IOT与智能家居 电机驱动与控制 快充与无线充 电驱动与BMS 锂电保护与BLDC 智能四表 汽车照明
广告
广告
您的位置: 半导体器件应用网 >>技术与应用 >> LLC轻载下输出特性分析及保持输出电压可控的解决方案

LLC轻载下输出特性分析及保持输出电压可控的解决方案

2018-11-27 11:51:54 来源:半导体器件应用网

【大比特导读】近年来LLC 拓扑广泛应用于照明驱动,电视电源,工业电源,服务器/PC电源,通信电源等消费及工业领域中的DC-DC级,这是因其具有如全负载范围原边开关管的零电压开通(ZVS),副边二极管或同步整流开关零电流关断(ZCS),EMI特性好(高频噪声分量较少),电路结构简单,成本较低等优异特性。

1.引言

近年来LLC 拓扑广泛应用于照明驱动,电视电源,工业电源,服务器/PC电源,通信电源等消费及工业领域中的DC-DC级,这是因其具有如全负载范围原边开关管的零电压开通(ZVS),副边二极管或同步整流开关零电流关断(ZCS),EMI特性好(高频噪声分量较少),电路结构简单,成本较低等优异特性。典型的半桥全波整流LLC拓扑如下图所示。

LLC轻载下输出特性分析及保持输出电压可控的解决方案

图1:半桥LLC拓扑

对于LLC拓扑,根据目前最为常用的基波近似法(First Harmonic Approximation, FHA,Fundamental Element Simplification, FES)[1]计算得到的直流增益曲线,即使负载很轻甚至负载为零,只要工作频率足够高那么输出电压电压一定是可控的,即可以稳定在规格要求范围内。然而,在大量采用该拓扑的产品中都可以发现:在轻载下输出电压无法稳定在规格要求范围内即往往高于规格的要求,即使LLC已经工作于非常非常高的频率。这与目前的理论分析是不相符的。因此有必要在轻载及空载条件下对直流增益曲线进行重新分析与计算,从中找到影响直流增益的因素,从而找到解决问题的方案。

2.变压器原边等效并联寄生电容对直流增益曲线的影响

采用FHA/FES方法计算LLC的直流增益曲线时,LLC变压器的模型中的漏感实际上已经被考虑进去:对于谐振电感为独立电感的应用,因为漏感与谐振电感为串联关系(副边漏感等效折算到原边),因此谐振腔的谐振电感感量为设计的谐振电感与漏感叠加值。而对于谐振电感与变压器集成方案,变压器漏感即谐振电感。但是原边绕组间,副边绕组间的分布电容及副边整流二极管或同步整流MOSFET的输出电容并未考虑到计算中。当考虑这些寄生电容后,变压器的模型及LLC等效电路分别如图2和3所示[3]

LLC轻载下输出特性分析及保持输出电压可控的解决方案

图2 考虑副边寄生电容后的变压器模型

LLC轻载下输出特性分析及保持输出电压可控的解决方案

图3 考虑副边寄生电容后的LLC等效电路模型

根据图2所示结构,图3中的变压器原边等效并联寄生电容Cp为:

Cp=Cpw+2(Csw+Csoss)Nps2 (1)

Cpw,Csw,Csoss分别为变压器原边绕组分布电容,变压器副边绕组分布电容及输出整流二极管或同步整流管的等效输出电容,Nps为变压器原副边的匝比,

根据图3所示等效电路,计算得到的LLC直流增益为:

G=(ffr)2(m-1)Qe2((ffr)2-1)2(m-1)2(ffr)2+m2((ffr)2-1m-(m-1m)(ffr)2(ffz)2)2

(2)

其中:

m=LpLr (3)

fr=12πLrCr (4)

fz=12πLrCp (5)

Qe=LrCr*1Rac (6)

Rac=8π2*Nps2*VoutIout (7)

以一个LLC谐振变换器设计参数为例:Lp=1400uH; Lr=165uH; Cr=68nF,Nps=16.7,对于图4所示的LLC变换器,使用阻抗分析仪在板测试变压器原边等效电容(图中所示的蓝色圆点为测试端),根据测试得到的阻抗曲线计算得到原边等效电容Cp为:

Cp=269pF (8)

LLC轻载下输出特性分析及保持输出电压可控的解决方案

图4 采用LLC拓扑的开关电源变压器原边等效并联电容测试端

根据公式(2)可以计算得到不同品质因数Q值(对应100%负载~1%负载)下的增益曲线族,如图5所示;

LLC轻载下输出特性分析及保持输出电压可控的解决方案

图5 考虑变压器寄生电容后的直流增益曲线

而相同条件下不考虑寄生电容的增益曲线族如图6所示。

LLC轻载下输出特性分析及保持输出电压可控的解决方案

图6 不考虑变压器寄生电容的直流增益曲线

从图5和图6的对比可以得到,由于变压器原边绕组等效寄生电容的存在,增益曲线在高频出现另一个电感电容并联谐振点,导致增益曲线在轻载情况下随频率升高而增益变高,且负载越轻,该现象越明显。这将导致轻载情况下输出电压无法稳定。相同负载(以10%负载为例)不同原边寄生电容(500pF~50pF)下的增益曲线如图7所示。从图中可知,寄生电容越大,谐振点越低,对LLC增益曲线的影响越大,只有在寄生电容小于50pF情况下,其对增益曲线的影响可以忽略不计。

LLC轻载下输出特性分析及保持输出电压可控的解决方案

图7 不同寄生电容下的直流增益曲线

随着工作频率的进一步升高,变压器中更多的寄生电容和寄生电感对LLC的工作模式产生影响,使得LLC拓扑变为多元件谐振拓扑,增益曲线将出现多个谐振点,LLC特性将变的更加复杂。

3.原边MOSFET等效输出电容对直流增益曲线的影响

对于LLC拓扑,原边MOSFET在进行开关切换(即一个开关管关断,死区时间后另一个开关管开通)过程中,激磁电感会与原边MOSFET的输出电容产生谐振,该谐振能量将部分传递到副边,使得在空载及轻载情况下输出电压升高。文献[7]中详细分析了LLC拓扑原边MOSFET的输出电容对直流增益曲线的影响,不同MOSFET输出电容对直流增益的影响如图8所示[7]:

LLC轻载下输出特性分析及保持输出电压可控的解决方案

图8 不同原边MOSFET输出电容对轻载直流增益曲线的影响

当MOSFET的输出电容较小时,轻载下直流增益曲线出现上翘现象,使得输出电压无法保持在规格要求范围内。

4.保持输出电压稳定的措施

根据本文第2部分的分析,由于变压器等效原边电容的存在和原边MOSFET输出电容较小,LLC的增益曲线在高频段出现随工作频率上升的现象,导致轻载情况下输出电压无法保持在规格范围内。这是多数开关电源无法接受的。接下来的部分将介绍一些措施来解决该问题:

4.1减小变压器等效并联电容

这是最直接解决问题的方案,然而却也是最难实施的方案。由于无论如何变压器的寄生电容都是存在的,因此可以采取的措施是尽量减小该电容,文献[3]给出了其称之为“分离式绕法”的变压器绕制建议,其寄生电容只有传统并绕方法的十分之一。文献[4]提出了“累进式”绕制方法,寄生电容非常小。但往往这些绕制方式会带来绕制的复杂性提高,从而使得变压器的价格上升。

4.2 LLC工作于打嗝模式

在轻载情况下LLC拓扑进入打嗝(burst)模式是较多采用的一种控制策略,该策略一方面可以保持输出电压在规格范围内,另一方面减小了轻载下的输入功率,提高了轻载下的效率。图9为典型的打嗝模式下的关键波形[5]。然而打嗝模式会带来输出电压纹波变大,这在一些应用,例如服务器电源,PC电源等是无法接受的。

LLC轻载下输出特性分析及保持输出电压可控的解决方案

图9 打嗝模式下的LLC关键波形示意图

4.3谐振电感并联电容

对于谐振电感为独立电感的应用中,文献[6]提出了一种多谐振LLC的方案,即在谐振电感上并联一个电容,如图10所示,从而生成一个新的LLC谐振点f02,且

LLC轻载下输出特性分析及保持输出电压可控的解决方案

图10 多谐振LLC拓扑

f02=12π1LpCp (9)

原有谐振频率也稍有变化,其值为:

f01=12π1Lr(Cp+Cr) (10)

新的增益曲线如图11所示:

LLC轻载下输出特性分析及保持输出电压可控的解决方案

图11 多谐振LLC变换器直流增益曲线

由于增益曲线在fw=f02时为零,因此理论上该多谐振LLC拓扑在任何负载下输出电压都可以低至零。设计中需要选择合适的Cp,确保LLC的最高工作频率不超过f02。

4.4 原边MOSFET并联电容

根据第3部分的分析,原边MOSFET的输出电容越大,相同工作频率下直流增益曲线越低,即输出电压越容易控制在规格范围内。因此在选定原边MOSFET的前提下,还可以通过并联电容来增大等效输出电容,从而控制输出电压。此方法简单易行,可是缺点也较明显:输出电容的增大带来MOSFET开关损耗的增加,从而降低了转化效率,特别是在轻载下,效率的降低比较明显。

4.5 增加变压器原副边匝比

根据图6~图8,无论是变压器原边等效并联寄生电容还是原边MOSFET输出电容对直流增益曲线的影响,都是发生在工作频率高于谐振频率的情况下。因此通过增加变压器的原副边匝比(多数是通过增加变压器原边绕组的匝数),令LLC拓扑在轻载情况下工作于谐振点附近,则寄生参数对输出电压的影响可以忽略,从而轻载下输出电压更容易稳定在规格范围内。当然此设计需要考虑满载及过流保护前等情况下的直流增益的峰值足够高,保证这些情况下输出电压的稳定。

4.6 减小副边二极管/同步整流管寄生电容

根据第2部分的分析,变压器原边等效并联电容有一部分为副边二极管或同步整流管的等效输出电容,因此选择较小输出电容的二极管或者MOSFET将有助于稳定输出电压。文献[8] 提出了在输出二极管或同步整流管上并联一个MOSFET与二极管串联的电路,该电路将部分能量反馈到原边侧,从而在轻载及空载下维持了输出电压的稳定。

4.7 轻载下关闭同步整流管

对于副边为同步整流(MOSFET为副边侧开关管)的设计,在轻载情况下将同步整流的驱动关闭将有助于保持输出电压的稳定,当同步整流的驱动关闭后,副边侧通过MOSFET的体二极管续流,体二极管的压降介于0.7V~1.2V,远高于同步整流开通时的压降(V=ID*RDS(on)),因此相同输出电压下所需要的副边绕组的输出电压更高。当然关闭同步整流的驱动也会有额外的问题,在负载突然加重需要将同步整流驱动打开时,由于上述压差的存在会导致输出电压出现过冲现象,因此设计中需要综合考虑该措施的可实施性。

5.总结

本文对LLC拓扑在轻载及空载情况下输出电压超出规格要求的现象进行了理论分析,证明变压器原边等效并联电容和原边MOSFET输出电容的存在产生出了该问题。相应地, 本文提出了多种可行的解决方案,来实现输出电压的稳定。本文将对电源开发工程师解决LLC拓扑轻载下的输出电压偏高问题提供有益的参考。

本文由大比特资讯收集整理(www.big-bit.com)

  • 赞一个(
    0
    )
  • 踩一下(
    0
    )
分享到:
阅读延展
电容 二极管
  • 可降解植入电子医疗器件有望告别“二次手术”

    可降解植入电子医疗器件有望告别“二次手术”

    小型化可植入的生物全可吸收电容器,为微型化、可降解和可植入的能源器件提供了新的解决方案,具有向未来可降解植入电子医疗器件发展的重要潜力。

  • 阳光照明半年报预增 获益降本增效

    阳光照明半年报预增 获益降本增效

    2018年,受大宗材料价格的继续上涨,及贴片电阻、贴片电容等特殊材料价格大幅上涨,阳光照明成本快速上升,导致毛利率下降。基于此,阳光照明将成本管控列入2019年的工作重点。

  • 美敦力等多家械企医疗设备高关税将豁免

    美敦力等多家械企医疗设备高关税将豁免

    特朗普政府宣布,将豁免从医疗设备到关键电容器等110种中国输美产品的高额关税,一些美企松了口气。

  • HI-FI音响采用RBD等系列优质电容

    HI-FI音响采用RBD等系列优质电容

    打开HI-FI音响的上盖板仔细查看:整体电路设计为四大部分:分别是信号输入/数字解码电路板、主体功放电路板和供电电源板以及面板的液晶显示电路板。

  • Vishay单片SPDT模拟开关可为便携式消费产品和医疗电子设备有效节省空间

    Vishay单片SPDT模拟开关可为便携式消费产品和医疗电子设备有效节省空间

    日前,Vishay Intertechnology, Inc.宣布,推出新的单片SPDT模拟开关,并在业内首次采用了超小尺寸的新型μDFN6封装。Vishay Siliconix DG3257非常适合用在便携式消费产品和医疗设备中切换模拟和数字信号,在4.2V下的电阻为5Ω,并且提高了带宽,减少了寄生电容,还有掉电保护功能。

  • 如何使用浪涌电流限制器NTC

    如何使用浪涌电流限制器NTC

    在启动电子设备(如开关电源(SMPS)或逆变器)时,设备会通过具有高峰值的瞬时异常电流。它被称为励磁涌流,如果没有保护,它可能破坏半导体器件或对平滑电容器的使用寿命产生有害影响。NTC热敏电阻用作ICL(励磁涌流抑制器),方便、有效地保护电气、电子器件的电路免受励磁涌流的影响。

  • 韩媒:LGD比三星显示受日本出口限制影响更小

    韩媒:LGD比三星显示受日本出口限制影响更小

    除了韩国本土之外,LGD还可以在其海外工厂生产有机发光二极管(OLED)面板。然而对三星显示来说,如果国内工厂停产,其海外工厂将不可避免地受到连锁反应的影响。三星显示的韩国工厂采用日本零件和材料的前端工艺,而其海外工厂则负责后端工艺。

  • 新型钙钛矿量子点稳定性提升方面取得重要进展

    新型钙钛矿量子点稳定性提升方面取得重要进展

    经过科学家的不懈努力,目前基于钙钛矿量子点材料的红、绿、蓝光发光二极管(LED)已可成功制备,在发光亮度、色纯度和能耗等方面展现出明显优势,有望应用于大尺寸超清显示和高端照明等领域。

  • 日本九州大学实现蓝色有机激光二极管

    日本九州大学实现蓝色有机激光二极管

    据外媒报道,日本九州大学的研究人员日前已经实现了基于有机半导体的激光二极管,为激光器在生物传感、显示器、医疗保健和光通信等领域应用的进一步扩展铺平了道路。

  • 整个Mini LED 产业链台湾是最完整的,胜过韩国与中国

    整个Mini LED 产业链台湾是最完整的,胜过韩国与中国

    产官学合推Mini LED 弯道超车日、韩。经过多年技术研发,友达(2409)、群创(3481)等国内面板厂今年都有Mini LED(次毫米发光二极管)相关产品推出,苹果更看准Mini LED背光技术优势,未来有机会导入iMac、Macbook与iPad等产品;

  • 新机制允许降低OLED显示器的能量需求

    新机制允许降低OLED显示器的能量需求

    来自RIKEN和加州大学圣地亚哥分校的科学家与国际合作伙伴合作,已经找到了一种显着降低有机发光二极管(OLED)所需能量的方法。OLED作为液晶二极管的潜在替代品已引起关注,因为它们具有诸如柔性,薄且不需要背光的优点。

  • LED灯的原理,LED灯有什么优势?

    LED灯的原理,LED灯有什么优势?

    LED(Light Emitting Diode),发光二极管,是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“大比特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得大比特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
Copyright Big-Bit © 1999-2016 All Right Reserved 大比特资讯公司 版权所有      未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任