汽车显示器架构中的外部和内部接口及其整合选型
摘要: 目前,越来越多的图像源元件可提供根据串联数据通道而成的第一级串联化,以供带有并联时钟通道的色彩位应用。参照开放的工业标准“FPD-
现在大型面板LCD市场(LCD电视、桌面PC监视器、笔记本电脑监视器)正在朝着高度标准化和整合化迈进,而汽车信息娱乐LCD架构踯躅在传统的概念中。主要原因在于业界通常倾向于购买完整的LCD模块,而将精力集中在视频适配器或接口卡设计上。现在,采用基本TFT玻璃以及加入差异化设计的显示器的定时控制器(TCON)正在成为新潮流。除了外部LCD接口外,还可以考虑内部显示接口,例如现在的工业标准RSDS( 抑制摆幅差分信号)总线技术。内部和外部接口的整合的益处真是举不枚举:所用元件更少、节约PCB空间并降低EMC辐射和磁化效益。此类收益也适用于图像主控应用,该应用一般发生在一个汽车音响本体ECU(电子控制单元)内。现在的图像处理单元(GPU)正逐渐弃用宽CMOS/TTL输出,因为它会消耗大量的封装引脚。目前,越来越多的图像源元件可提供根据串联数据通道而成的第一级串联化,以供带有并联时钟通道的色彩位应用。参照开放的工业标准“FPD-
传统的图像与远程LCD面板连接
在传统的汽车信息娱乐系统设计中,图像控制器或图像处理单元(GPU)会传送有图素时钟和同步信号对齐的并联RGB颜色位。如图1中所示。在远程的LCD显示器连接中,有时会因缆线太厚,或电源和EMC(电磁兼容性)等的问题而导致并联总线不能跨越超过20-30厘米的长度。针对这个问题,美国国家半导体在90年代的中期与当时领导业界的TFT面板供应商一起研发了崭新的串联/解串(SerDes)FPD-
四线道和单线道串联/反串联转换器之间的LVDS桥接概念
现在有越来越多的图像处理器、定标器和甚至是中低档的FPGA都整合有FPD-
此外,该器件还可在LVDS输入处整合一个100Ω的端接电阻器。除上述外,该器件还在LVDS输出上特设一个预加重信号条件功能,以便在使用有损耗缆线作较长程的连接时增强信号。用户可通过一个外部电阻器来控制该功能,并以最高每秒1032Mbit的数据吞吐量驱动长至10米的屏蔽双姣线。内部直流平衡编码可通过串联的电容器来支持交流耦合互连。DS99R421串联数据流的位映射可与DS90UR124单线道LVDS反串联器元件兼容,它当中包含有一个 “@ Speed BIST” (内置自测试)功能来验证链接的完整性。
RSDS优化内部面板TFT-LCD架构
汽车显示器系统供应商越来越专注于开发定时控制器的功能,以突显其产品的独特性。因此即使是处于TCON和行/列驱动器之间的内部显示总线也备受关注。美国国家半导体特别联同前列的LCD模块供应商一起开发出开放式的抑制摆幅差分信号标准。其目的是为LCD定时控制器和列驱动器元件间的接口订立一个共用的标准。这个接口在支援高数据吞吐量的同时,可减少互连的数量和功耗,以及能够减低电磁幅射来简化屏蔽的工作。
RSDS其实是工业LVDS信号标准(RS-644A)的一个衍生标准,其输出驱动电流被进一步削减至只有2mA。在一个典型100Ω端接电阻器内的差分信号波幅虽只有±200mV,但这已足够有余供短至中距离的系统内部连接使用。在信号转换期间因相对较小信号所造成的边沿速率摆幅可以被设计成中度斜坡,这样便可缔造出比采纳TTL信号更高的图素时钟频率。RSDS输出缓冲器提供1.3V的偏置电压作为共模电压以供差分信号使用。RSDS总线只需要传播RGB色彩位和一个并联时钟信号(“RSCK”)。RSDS采用一个2:1的多工方案,即在每一条数据通道上有个色彩位,而每一个位均同时会在时钟通道的上升和下降边期间被多工化(“双倍数据速率”)。接收列驱动器元件因此可无需一个整合高频PLL电路而能运作,这有助其整合入玻璃基板的上或内。与TTL总线概念比较,通过这串联化可以减少一半的总线线路。例如在一个具有6位色彩深度的TTL双总线(“双及单图素”)架构中,那里有36条数据线和两条时钟线(总共38条线),而在一个等效的RSDS架构中,该处只需有一条总线,其中包含有9个数据差分对和一个差分时钟线对(总共20条线)。
具备整合式LVDS和RSDS接口的定时控制器
定时控制器是TFT LCD模块的大脑与核心元件。对于汽车远端显示器而言,输入信号在很多情况下都是由图像主控端的串联LVDS数据流提供的(例如汽车音响本体ECU)。LVDS接口在反串联器功能中发挥作用:它将RGB色彩位和控制信号(Hsync, Vsync and DE)映射回一个并联的数据格式。接着,TCON将那些数据朝向LCE面板的行和列驱动器进行布线和重新格式化。例如图3所示的FPD87532就是一个高集成度定时控制器的例子。图中的TCON将一个LVDS单图素输入接口与RSDS输出列驱动器接口结合在一起,并放置在平面显示器旁以便提供数据缓冲和控制信号的生成。具备LVDS的FPD-
升压脉冲经由一个内部或外部的EEPROM LUT(当中包含有升压/过驱动级)再加上可作为画面缓冲器的外部记忆体来控制。RTC的参考数值是新的灰度数值,其数值视乎同一个图素的现行帧RGB灰度数据和先前帧RGB数据之间的分别而定。RSDS接口将CMOS级的信号转换成供系统时钟(DCLK)和RGB色彩数据用的RSDS信号。RSDS偏斜可经由几个步骤来控制,以在相应的列驱动器容纳不同的延迟。垂直及水平LCD定时控制方块会产生出TTL/CMOS级的信号,以用来在LCD系统中连接列和行驱动器。所有信号均与RSDS数据时钟同步化。为了展示TCON方案的整合优点,图4分别列出不同世代定时控制板的基准。从比较中可看出,外部元件的数量和PCB的尺寸都显著地下降。例如:一个190个无源元件的10寸宽屏幕VGA LCD,在TCON和列驱动器间需要一个TTL总线。然而,通过采用RSDS总线后,元件的数量大幅削减至只有101个,幅降达47%。此外,PCB的层数亦由原先用TTL时的六层减至用RSDS时的四层,也进一步减轻了成本。最后,由于无需再在定时控制器外部使用宽阔的并联TTL/CMOS总线, EMC受益良多。
结语
现代的汽车信息娱乐显示器架构正在逐渐倾向用整合式的串联方案来取代旧有的并联TTL/CMOS RGB总线,以缔造出最完美的系统概念。此方案的优点是可削减引脚数量、互连数目、功耗、幅射性放射和对外间噪声的感染。LVDS和RSDS物理层标准已获验证,而相关的技术已趋成熟,不单简化了设计的工作而且大大降低了设计风险。未来,LCD玻璃基板上和内部的集成度将会不断提高。具备基本功能的定时控制器将会以COG(玻璃上芯片)的形式面市。在这情况下,RSDS总线可以作为输入总线的另一选择。因为RSDS接收器并不要求难整合在玻璃上的高频PLL结构来选通输入数据。凭借在来自图像控制主控一方经中间接口适配器或TCON板、列板基至是TFT玻璃上或内的芯片元件而来的完整数据路径上进行系统分割的优势,可提升整体系统的效能表现和EMC特性,兼可降低系统。
暂无评论