利用分时一相位控制串联谐振逆变器的研究与应用

2013-12-20 14:12:30 来源:http://ic.big-bit.com/|3 点击:1120

针对$IGBT开关损耗小,通断速度快,工作频率较高,元件容量大且其成本逐渐降低等优点,选用IGBT作为功率开关管。但是IGBT的开关损耗,尤其是拖尾电流在高频开关工作状态下引起的关断损耗很大,限制工作频率的提高。目前IGBT的开关频率在零电流开关(ZCS)状态下可工作于100 kHz频率。采用倍频方式逆变器输出频率可提高2倍,但需要额外的谐振电路,并且频率的提高有限,器件的换流条件也较差,采用IGBT并联分时的控制方法可以提高逆变器的开关频率。

感应加热电源的调功方法可分为两类:逆变调功和直流调功。逆变调功的方法目前主要有:脉冲频率调制法(PFM)、脉冲密度调制法(PDM)、脉冲宽度调制法(PWM)、脉冲均匀调制(PSM)等。直流调功通常采用直流斩波或相控整流来改变逆变器的输入直流电压的大小,从而将逆变器的功率调节转化为对直流电压的调节。每种调功方式都有各自的优缺点。相对这些调功方式,相位调功具有控制电路和驱动脉冲简单,稳定工作范围宽,响应速度快和适应性强等优点。

这里从设备成本、体积及转换效率的角度出发,设计了4个IGBT并联的负载$串联谐振逆变器,采用IG-BT分时-相位复合控制的新型策略,同时实现逆变器四倍频输出和输出功率调节,并进行了系统的理论分析和电路仿真。通过仿真,验证了该方案的可行性。

电路结构

图1给出了四倍频逆变器的主电路结构图。该电源采用AC/DC/AC结构,输入经三相不控整流得到脉动的直流电压,再经过滤波环节C0得到平滑的直流电压,送入采用负载串联谐振式$单相全桥逆变器,在感应线圈上产生高频电压和电流。逆变电路的每个桥臂都由4个IGBT开关器件并联而成,CD为隔直电容;T为高频变压器用于负载匹配;R,L为感应线圈等效电感和电阻;补偿电容C组成变压器二次侧谐振槽路。

 

 

控制策略的分析

传统的逆变器工作方式是每个桥臂并联的IGBT在每个开关周期同时工作。在散热条件一定的情况下,为了提高输出频率,IGBT必须增加电流定额,而且并联器件的均流也是一个问题,输出频率的提高也很有限。将逆变器每个桥臂的IGBT进行分时控制,可避免这些缺点,实现输出频率的提高,它的工作原理见图2。

 

 

从图2可以看出,由Q1a~Q4a构成第一组逆变桥,由Q1b~Q4b构成第二组逆变桥,由Q1c~Q4c构成第三组逆变桥,由Q1d~Q4d构成第四组逆变桥,四组逆变桥轮流导通一个谐振周期。这样,如果IGBT允许的开关频率为f0,则电源的输出频率为4f0。同时,采用相位调功方式,通过调节开关管的导通宽度来调节输出电流与电压的滞后角度ψ来调节输出功率。通过检测负载电流过零点,调节开关管的导通时间,使它的超前电流一个角度ψ,ψ从 O~90°可调,根据P=UIcosψ可知,改变ψ可实现调功的目的。$逆变器的具体工作过程分析如图3所示。

 [page]

 

设C1~C4是IGBT的CE极间结电容。初始状态D1a,D4a导通,负载谐振电流i为负,并向C0反充电。其等效电路如图3(a)所示。

(1)t0-t1:t0时刻,电流i反向,●1a,Q4a在零电流零电压(ZVZCS)下导通,负载谐振电流i为正,其等效电路如图3(b)所示。负载谐振电流i从a流向b,谐振负载由电源UD提供能量。

列出负载回路的电压微分方程为:

 

 

初始条件:uC=-Ucm,i=0

式中:UD为逆变器输入电压;R为负载回路等效电阻;L为负载等效电感;i为负载回路电流。

解该微分方程得:

 

 

(2)tl一t2:t1时刻,UC=UC1,i=i1。Q1a,Q4a在零电压(ZVS)下关断。负载谐振电流i为正,其等效电路如图3(c)所示。电感L和C,C1~C4共同谐振;C3,C2放电;C1,C4充电。

列出负载回路的电压微分方程为:

 

 

式中:Ca=C+C1。

初始条件:UC=UC1,i=i1

解该微分方程得:

 

 

当t=t2时,UC=UC2,i=i2。C2,C3上的电压放到零,D2a,D3a导通。(3)t2-t3:t2时刻,D1a,D4a在电容C1~C4的作用下零电压导通,负载谐振电流i为正且向C1反充电。其等效电路如图3(d)所示。列出负载回路的电压微分方程为:

 [page]

 

逆变器t4~t6时刻,Q2a和Q3a动作,其工作过程类似于t1~t3。接下来后三组开关管分时工作,工作过程同第一组。通过分析可知,分时一相位复合控制方式可以方便的提高输出频率和调节输出功率,提高了整机的效率。同时实现了开关管的软开关,有效降低了开关损耗。

仿真及分析

利用上述分时一相位复合控制策略对全桥$IGBT逆变器主电路进行Pspice仿真分析,对新型控制策略的正确性与可行性进行了验证。仿真时,逆变器负载等效为变压器一次侧R,L,C谐振槽路。设逆变器动态过程仿真条件为:输入直流电压UD=180 V,负载等效电阻R=3.5 Ω,开关管频率为f0=100 kHz,输出频率f=400 kHz,等效谐振电感L=20 μH,等效谐振电容C=0.075μF,对开关管的驱动波形和负载的电压电流波形进行了仿真。得出如下波形(见图4,图5),其中图4为上下桥臂IGBT 的驱动仿真波形,图5(a)和图5(b)分别为ψ=0°和ψ=25°时负载电压电流的仿真波形,由于一开始启动时电流波形不明显,故截取后段时间的仿真波形。从图中可以看出,仿真结果与理论分析相符合。从图5(a)和图5(b)波形可知,串联谐振型逆变器的输出负载电压波形近似为方波,负载电流波形接近于正弦波,可知电路工作于谐振频率附近,在此方法下逆变器能够基本满足较大范围内的功率调节。

 

 

结语

这里研究了一种采用时间分割和相位调功复合控制的$IGBT全桥串联型逆变器,它使采用IGBT制作高频大容量感应加热电源成为可能。理论分析和计算机仿真结果表明,采用这种控制方式的高频大功率电源电路结构简单、控制方便,能方便地提高输出频率和调节输出功率,具有很好的应用前景。

本文由大比特收集整理(www.big-bit.com)

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。
Big-Bit 商务网

请使用微信扫码登陆

x
凌鸥学园天地 广告