用反相器制成的真正的运算放大器

2014-04-01 10:38:55 来源:|0 点击:1760

模拟域的“数字化”将最终延伸至广大的业余爱好者,他们将越来越难找到简单的模拟器件。早在1973年,飞兆半导体公司的应用指南就已经预测了这个惊人的趋势(参考文献3)。然而,在这份应用指南中所提供的运算放大器类电路示例均未提供差分输入信息。本设计实例意在填补这个空白,对具备真正差分输入和近似轨到轨输出摆幅能力的二级运算放大器进行演示。实例中的运算放大器通过5V单电源供电。

图1显示的是一个二级运算放大器的完整实现,该运算放大器仅使用了四个CD4049UBE六反相器、一个电阻器和一个电容器(参考文献4)。请注意,图中U2的引脚8(GND)处于悬空状态,而U3的引脚1(VCC)也处于悬空状态。U2中的并联反相器的输出端与U1的VCC引脚相连,而U3中的反相器的输出端则与U1的GND引脚相连。

 

 

图1:二级运算放大器的完整实现。

图2显示的最终电路的晶体管级功能原理图,该电路的外部晶体管已被移除。电路的第一级取自参考文献5中的电路,以实现从差分到单端的转换。U2反相器内的P沟道金属氧化物半导体(PMOS)器件充当电流源,而U3反相器内的N沟道金属氧化物半导体(NMOS)则作为电流阱。由于PMOS和NMOS的强度不对等,在过去所采用的方法是用不同数量的电流源和电流阱把共模范围拉伸至中等大小。

 

 

图2:晶体管级功能原理图。

U1中的变频器充当双gm差分对。因为电路的第一级仅有介于25dB和30dB之间的增益,故增加了第二级。由于两级的带宽类似,因此采用标准补偿技术来保证整体的稳定性。请注意,任何合理的反馈组态都必然会将第二级带入线性范围,由此无需应用可减少增益的局部分流电阻器。

表1中列出了运算放大器原型的大致规格。尽管运算放大器有差分输入,但并没有太大的共模抑制。从另一方面来说,该运算放大器的增益带宽要大于典型的LM741运算放大器的增益带宽。

该设计若采用CD4069UB和74HCU04这两种器件应当能够同样好地工作,尽管U2和U3中器件的比率可能会改变,从而使具有不同驱动强度的晶体管的共模范围重新回到中心位置。而唯一的关键点是反相器是无缓冲的,否则每个增益级会变成一个三级环形振荡器。

 

[page]

 

图3:测得的开环放大器的增益幅度响应。

 

 

图4:电压缓冲器组态的大信号阶跃响应,显示了带有缺陷的零点取消的某些过冲特点。

 

 

图5:基于5V单电源的接近实际应用的轨到轨运行(运算放大器配置的非反相增益为11)。

 

 

图6:利用万用板制成的原型。

本文由大比特收集整理(www.big-bit.com)

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。
Big-Bit 商务网

请使用微信扫码登陆

x
凌鸥学园天地 广告